中考数学二轮复习考点提分特训专题04 巧用中点解决几何问题(解析版)_第1页
中考数学二轮复习考点提分特训专题04 巧用中点解决几何问题(解析版)_第2页
中考数学二轮复习考点提分特训专题04 巧用中点解决几何问题(解析版)_第3页
中考数学二轮复习考点提分特训专题04 巧用中点解决几何问题(解析版)_第4页
中考数学二轮复习考点提分特训专题04 巧用中点解决几何问题(解析版)_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题04巧用中点解决几何问题一、【知识回顾】方法与技巧:中点问题常见辅助线做法①遇到三角形边上的中点,考虑构造三角形的中位线②遇到直角三角形斜边的中点,考虑直角三角形斜边的中线性质③遇到等腰三角形底边的中点,考虑等腰三角形“三线合一”的性质④遇到中点+垂线,角平分线+垂线,考虑垂直平分线的性质⑤遇到面积类型题,考虑三角形中线平分面积⑥遇到线段数量关系,考虑倍长中线构造全等三角形二、【考点类型】考点1:构造三角形的中位线典例1:(2022秋·四川眉山·九年级校考期中)如图,SKIPIF1<0中,SKIPIF1<0,点E是SKIPIF1<0的中点,若SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,线段SKIPIF1<0的长为(

)A.1cm B.2cm C.3cm D.4cm【答案】A【分析】延长SKIPIF1<0交SKIPIF1<0于F,利用“角边角”证明SKIPIF1<0和SKIPIF1<0全等,根据全等三角形对应边相等可得SKIPIF1<0,再求出SKIPIF1<0并判断出SKIPIF1<0是SKIPIF1<0的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得SKIPIF1<0.【详解】解:如图,延长SKIPIF1<0交SKIPIF1<0于F,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,又∵点E为SKIPIF1<0的中点,∴SKIPIF1<0是SKIPIF1<0的中位线,∴SKIPIF1<0.故选:A【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.【变式1】(2022秋·山东济宁·九年级济宁市第十五中学统考期末)如图,在SKIPIF1<0中,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0于点E,点F是SKIPIF1<0的中点,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的长为(

).A.2 B.3 C.4 D.5【答案】A【分析】分别延长SKIPIF1<0,SKIPIF1<0交于点M,构造等腰SKIPIF1<0,利用等腰三角形的“三线合一”的性质和三角形中位线定理求解即可.【详解】解:延长SKIPIF1<0,SKIPIF1<0交于点M,∵SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∵点F是SKIPIF1<0的中点,SKIPIF1<0,∴SKIPIF1<0为SKIPIF1<0中位线,∴SKIPIF1<0.故选:A.【点睛】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.【变式2】(2022春·全国·八年级假期作业)已知:如图,在SKIPIF1<0中,中线SKIPIF1<0交于点SKIPIF1<0分别是SKIPIF1<0的中点.求证:(1)SKIPIF1<0;(2)SKIPIF1<0和SKIPIF1<0互相平分.【答案】(1)见解析;(2)见解析.【分析】(1)利用三角形中位线定理即可得出FG=DE,且FG∥DE;(2)由(1)的条件可以得出四边形DEFG为平行四边形,根据平行四边形的性质可以得出对角线SKIPIF1<0和SKIPIF1<0互相平分.【详解】(1)在△ABC中,∵BE、CD为中线∴AD=BD,AE=CE,∴DE∥BC且DE=SKIPIF1<0BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=SKIPIF1<0BC.∴DE∥FG(2)由(1)知:DE∥FG,DE=FG.∴四边形DFGE为平行四边形.∴SKIPIF1<0和SKIPIF1<0互相平分【点睛】此题主要考查了三角形的中位线定理,平行四边形的判定和性质,正确利用三角形中位线定理是解题关键.【变式3】(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=SKIPIF1<0BC.连结CD、EF,那么CD与EF相等吗?请证明你的结论.【答案】CD=EF,理由见解析.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DESKIPIF1<0BC,然后证得四边形DEFC是平行四边形,再根据平行四边形的对边相等即可说明.【详解】解:结论:CD=EF.理由如下:∵D、E分别是边AB、AC的中点,∴DE∥BC,DESKIPIF1<0BC.∵CFSKIPIF1<0BC,∴DE=CF,∴四边形DEFC是平行四边形,∴CD=EF.【点睛】本题主要考查了三角形的中位线和平行四边形的判定与性质,掌握三角形的中位线平行于第三边并且等于第三边的一半成为解答本题的关键.考点2:直角三角形斜边的鹅中线典例2:(2022秋·福建福州·八年级统考期中)如图,在一块含SKIPIF1<0角的三角板(SKIPIF1<0)的顶点SKIPIF1<0处作SKIPIF1<0,垂足为SKIPIF1<0.在SKIPIF1<0的右侧作SKIPIF1<0使SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0的延长线交SKIPIF1<0于SKIPIF1<0.设SKIPIF1<0,SKIPIF1<0,则下列式子成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根据等腰三角形的性质可得出SKIPIF1<0,因为SKIPIF1<0可得出SKIPIF1<0,又根据SKIPIF1<0可得出SKIPIF1<0,SKIPIF1<0,最后根据外角的性质即可得出答案.【详解】∵SKIPIF1<0为等腰三角形,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故选D.【点睛】本题主要考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,通过三角形外角的性质证得SKIPIF1<0是解决问题的关键.【变式1】(2022秋·新疆乌鲁木齐·九年级校考期中)如图,SKIPIF1<0SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0内部的一个动点,且满足SKIPIF1<0,则线段SKIPIF1<0长的最小值为(

)A.2 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】如图,取SKIPIF1<0的中点O,连接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根据直角三角形斜边中线的性质求出SKIPIF1<0,根据勾股定理求出SKIPIF1<0,根据两点之间线段最短得到SKIPIF1<0即可解决问题.【详解】解:如图,取SKIPIF1<0的中点O,连接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴PC的最小值为1,故选:B.【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式2】(2022秋·广西贵港·九年级统考期中)如图,在SKIPIF1<0中,SKIPIF1<0,由图中的尺规作图痕迹得到的射线SKIPIF1<0与SKIPIF1<0交于点E,点F为SKIPIF1<0的中点,连接SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0的周长为(

)A.SKIPIF1<0+1 B.SKIPIF1<0+2 C.2SKIPIF1<0+2 D.2SKIPIF1<0+3【答案】C【分析】根据作图可知SKIPIF1<0平分SKIPIF1<0,结合SKIPIF1<0,由三线合一求出SKIPIF1<0长,根据勾股定理求出SKIPIF1<0长,再根据直角三角形斜边中线的性质求出SKIPIF1<0长,即可解答.【详解】解:由作图可知,SKIPIF1<0平分SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,点F为SKIPIF1<0的中点,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0的周长为:SKIPIF1<0.故选:C.【点睛】本题考查了角平分线的概念,等腰三角形性质,勾股定理,直角三角形性质,求出SKIPIF1<0边是解题的关键.【变式3】(2021·广东广州·统考中考真题)如图,在四边形ABCD中,SKIPIF1<0,点E是AC的中点,且SKIPIF1<0(1)尺规作图:作SKIPIF1<0的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若SKIPIF1<0,且SKIPIF1<0,证明:SKIPIF1<0为等边三角形.【答案】(1)图见解析;(2)证明见解析.【分析】(1)根据基本作图—角平分线作法,作出SKIPIF1<0的平分线AF即可解答;(2)根据直角三角形斜边中线性质得到SKIPIF1<0并求出SKIPIF1<0,再根据等腰三角形三线合一性质得出SKIPIF1<0,从而得到EF为中位线,进而可证SKIPIF1<0,SKIPIF1<0,从而由有一个角是60°的等腰三角形是等边三角形得出结论.【详解】解:(1)如图,AF平分SKIPIF1<0,(2)∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵AF平分SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0为等边三角形.【点睛】本题主要考查了基本作图和等腰三角形性质以及与三角形中点有关的两个定理,解题关键是掌握等腰三角形三线合一定理、直角三角形斜边中线等于斜边一半以及三角形中位线定理.考点3:等腰三角形三线合一性质典例3:(2023秋·江西南昌·八年级统考期末)如图所示,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0于点E,SKIPIF1<0于点D,交SKIPIF1<0于F.(1)若SKIPIF1<0,求SKIPIF1<0的度数;(2)若点F是SKIPIF1<0的中点,求证:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)见解析【分析】(1)求得SKIPIF1<0的度数后利用四边形的内角和定理求得结论即可;(2)连接SKIPIF1<0,根据等腰三角形“三线合一”的性质得到SKIPIF1<0,SKIPIF1<0,又易证SKIPIF1<0,即得出SKIPIF1<0.【详解】(1)∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)如图,连接SKIPIF1<0,∵SKIPIF1<0,且点F是SKIPIF1<0的中点,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【点睛】本题考查四边形的内角和、三角形的内角和及等腰三角形的性质,解题的关键是准确作出辅助线,合理转化角与角之间的关系.【变式1】(2020·内蒙古赤峰·统考中考真题)如图,SKIPIF1<0中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则SKIPIF1<0外接圆的面积为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先根据等腰三角形的三线合一可得AD是BC的垂直平分线,从而可得点O即为SKIPIF1<0外接圆的圆心,再利用圆的面积公式即可得.【详解】SKIPIF1<0,AD是SKIPIF1<0的平分线SKIPIF1<0,且AD是BC边上的中线(等腰三角形的三线合一)SKIPIF1<0是BC的垂直平分线SKIPIF1<0是AC的垂直平分线SKIPIF1<0点O为SKIPIF1<0外接圆的圆心,OA为外接圆的半径SKIPIF1<0SKIPIF1<0外接圆的面积为SKIPIF1<0故选:D.【点睛】本题考查了等腰三角形的三线合一、三角形外接圆,正确找出三角形外接圆的圆心是解题关键.【变式2】(2022秋·浙江杭州·八年级统考期末)如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E点,DF⊥AC于点F,则下列四个结论:①AD上任意一点到AB,AC两边的距离相等;②AD⊥BC且BD=CD;③∠BDE=∠CDF;④AE=AF.其中正确的有()A.②③ B.①③ C.①②④ D.①②③④【答案】D【分析】根据等腰三角形三线合一的性质,角平分线上的点到角两边的距离相等,利用“HL”证明SKIPIF1<0可得对应角SKIPIF1<0,全等三角形对应边相等可得SKIPIF1<0,然后求出SKIPIF1<0可得出答案.【详解】∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0上任意一点到SKIPIF1<0、SKIPIF1<0的距离相等(角平分线上的点到角两边的距离相等),故①正确.∵SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0(线段垂直平分线上的点到线段两端的距离相等),故②正确.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0≌SKIPIF1<0(HL),∴SKIPIF1<0故③正确,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故④正确,故选D.【点睛】本题考查了等腰三角形三线合一的性质,全等三角形的判定与性质,角平分线的性质,熟记各性质是解题的关键.【变式3】(2022秋·吉林长春·八年级校考阶段练习)如图所示,在SKIPIF1<0中,SKIPIF1<0,直线EF是AB的垂直平分线,D是BC的中点,M是EF上一个动点,SKIPIF1<0的面积为12,SKIPIF1<0,则SKIPIF1<0周长的最小值是_______________.【答案】8【分析】连接AD,AM,由EF是线段AB的垂直平分线,得到AM=BM,则△BDM的周长=BD+BM+DM=AM+DM+BD,要想△BDM的周长最小,即要使AM+DM的值最小,故当A、M、D三点共线时,AM+DM最小,即为AD,由此再根据三线合一定理求解即可.【详解】解:如图所示,连接AD,AM,∵EF是线段AB的垂直平分线,∴AM=BM,∴△BDM的周长=BD+BM+DM=AM+DM+BD,∴要想△BDM的周长最小,即要使AM+DM的值最小,∴当A、M、D三点共线时,AM+DM最小,即为AD,∵AB=AC,D为BC的中点,∴AD⊥BC,SKIPIF1<0,∴SKIPIF1<0,∴AD=6,∴△BDM的周长最小值=AD+BD=8,故答案为:8.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A、M、D三点共线时,AM+DM最小,即为AD.考点4:垂直平分线性质典例4:(2022·新疆乌鲁木齐·校考一模)如图,在矩形ABCD中,AB=4cm,对角线AC与BD相交于点O,DE⊥AC,垂足为E,AE=3CE,则DE的长为(

)A.SKIPIF1<0 B.2cm C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由矩形的性质得出OA=OD=OC,再根据线段垂直平分线的性质得出OD=CD,最后根据勾股定理计算,即可得到答案.【详解】∵四边形ABCD是矩形,∴OA=SKIPIF1<0AC,OD=SKIPIF1<0BD,AC=BD,CD=AB=4cm,∴OA=OD=OC,∵DE⊥AC,AE=3CE,SKIPIF1<0∴OE=CESKIPIF1<0,∠DEA=90°,∴OD=CD=4cm,∴OC=OD=CD=4cm,∴OE=CESKIPIF1<0=2cm∴SKIPIF1<0故选:D.【点睛】本题考查了矩形、垂直平分线、勾股定理的知识;解题的关键是熟练掌握矩形、垂直平分线的性质,从而完成求解.【变式1】(2021·四川内江·统考中考真题)如图,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,对角线SKIPIF1<0的垂直平分线SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0、交SKIPIF1<0于点SKIPIF1<0,则线段SKIPIF1<0的长为__.【答案】SKIPIF1<0##7.5【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.【详解】解:如图:SKIPIF1<0四边形SKIPIF1<0是矩形,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的垂直平分线,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得,SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的垂直平分线,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.【变式2】(2020·江西·统考中考真题)如图,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的延长线交SKIPIF1<0于点SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0的度数为__________.【答案】SKIPIF1<0【分析】如图,连接SKIPIF1<0,延长SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0利用等腰三角形的三线合一证明SKIPIF1<0是SKIPIF1<0的垂直平分线,从而得到SKIPIF1<0再次利用等腰三角形的性质得到:SKIPIF1<0从而可得答案.【详解】解:如图,连接SKIPIF1<0,延长SKIPIF1<0与SKIPIF1<0交于点SKIPIF1<0SKIPIF1<0SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的垂直平分线,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案为:SKIPIF1<0【点睛】本题考查的是等腰三角形的性质,掌握等腰三角形的三线合一是解题的关键.【变式3】(2020·江苏连云港·中考真题)如图,在四边形SKIPIF1<0中,SKIPIF1<0,对角线SKIPIF1<0的垂直平分线与边SKIPIF1<0、SKIPIF1<0分别相交于SKIPIF1<0、SKIPIF1<0.(1)求证:四边形SKIPIF1<0是菱形;(2)若SKIPIF1<0,SKIPIF1<0,求菱形SKIPIF1<0的周长.【答案】(1)见解析;(2)52【分析】(1)先证明SKIPIF1<0,得到四边形SKIPIF1<0为平行四边形,再根据菱形定义证明即可;(2)先根据菱形性质求出OB、OM、再根据勾股定理求出BM,问题的得解.【详解】(1)∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0是对角线SKIPIF1<0的垂直平分线,∴SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴四边形SKIPIF1<0为平行四边形.又∵SKIPIF1<0,∴四边形SKIPIF1<0为菱形.(2)∵四边形SKIPIF1<0为菱形,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0.∴菱形SKIPIF1<0的周长SKIPIF1<0.【点睛】本题考查了菱形判定与性质定理,熟知菱形判定方法和性质定理是解题关键.考点5:中线平分面积典例5:(2022秋·安徽滁州·八年级校考阶段练习)如图,SKIPIF1<0的面积为SKIPIF1<0,SKIPIF1<0垂直SKIPIF1<0的平分线SKIPIF1<0于SKIPIF1<0,则SKIPIF1<0的面积为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】延长SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,根据SKIPIF1<0垂直SKIPIF1<0的平分线SKIPIF1<0于SKIPIF1<0,即可求出SKIPIF1<0,又知SKIPIF1<0和SKIPIF1<0等底同高,可以证明两三角形面积相等,即可证明三角形SKIPIF1<0的面积.【详解】解:延长SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,∵SKIPIF1<0垂直SKIPIF1<0的平分线SKIPIF1<0于SKIPIF1<0,SKIPIF1<0,又知SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0和SKIPIF1<0等底同高,∴SKIPIF1<0,∴SKIPIF1<0,故选:B.【点睛】本题考查了全等三角形的性质与判定,三角形中线的性质.证明出三角形PBC的面积和原三角形的面积之间的数量关系是解题的关键.【变式1】(2021秋·内蒙古鄂尔多斯·八年级统考期末)如图,在SKIPIF1<0中,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0于点P,已知SKIPIF1<0的面积为SKIPIF1<0,则阴影部分的面积为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】延长SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,根据角平分线的定义得到SKIPIF1<0,由垂直的定义得到SKIPIF1<0,根据全等三角形的性质得到SKIPIF1<0,进而求得答案.【详解】解:如图,延长SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,在SKIPIF1<0与SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0≌SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0阴影部分的面积SKIPIF1<0.故选A.【点睛】本题考查了全等三角形的判定和性质,利用三角形的中线求面积,角平分线的定义,垂直的定义,熟练掌握全等三角形的判定和性质是解题的关键.【变式2】(2021秋·福建福州·八年级福建省福州延安中学校考期中)如图,△ABC中,AC=DC=3,AD平分∠BAC,BD⊥AD于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为(

)A.1.5 B.3 C.4.5 D.6【答案】C【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【详解】解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=SKIPIF1<0S△ABH,S△CDH=SKIPIF1<0S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为SKIPIF1<0×3×3=4.5.故选:C.【点睛】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.【变式3】(2023春·江苏·八年级阶段练习)如图,在平行四动形纸板SKIPIF1<0中,点SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分别为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中点,连接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.将一飞镖随机投掷到平行四边形纸板上,则飞镖落在阴影部分的概率为________.【答案】SKIPIF1<0##0.375【分析】先求出S△BED=SKIPIF1<0S△ABD,S△BFD=SKIPIF1<0S△CBD,S△BOF=SKIPIF1<0S△BFD=SKIPIF1<0S△CBD,再根据S△ABD=S△CBD=SKIPIF1<0,即可得答案.【详解】解:∵E为AB的中点,∴S△BED=SKIPIF1<0S△ABD,∵F为CD的中点,∴S△BFD=SKIPIF1<0S△CBD,∵O为BD的中点,∴S△BOF=SKIPIF1<0S△BFD=SKIPIF1<0S△CBD,∵S△ABD=S△CBD=SKIPIF1<0,∴S阴影=S△BED+S△BOF

=SKIPIF1<0+SKIPIF1<0=SKIPIF1<0,∴飞镖落在阴影部分的概率为:SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】本题考查了三角形中线的性质,概率的求法,解题的关键是三角形中线的性质的灵活运用.考点6:倍长中线,构全等典例6:(2022秋·甘肃定西·八年级统考期中)如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0边上的中线,则SKIPIF1<0的取值范围是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】延长AD至点E,使得DE=AD,可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,从而得到SKIPIF1<0的取值范围.【详解】如图,延长AD至点E,使得DE=AD,∵SKIPIF1<0是SKIPIF1<0边上的中线,∴SKIPIF1<0,在△ABD和△CDE中,SKIPIF1<0,∴△ABDSKIPIF1<0△CDE(SAS),∴AB=CE=5,AD=DE,∵△ACE中,AC-CE<AE<AC+CE,∴4<AE<14,∴2<AD<7.故选:C.【点睛】本题主要考查倍长中线法解题,能够做出辅助线证出三角形全等再结合三角形三边关系是解题关键.【变式1】(2021秋·河南信阳·八年级校考期中)如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【答案】C【分析】在AE取点F,使EF=BE.利用已知条件AB=AD+2BE,可得AD=AF,进而证出2AE=AB+AD;②在AB上取点F,使BE=EF,连接CF.先由(SAS)证明△ACD≌△ACF,得出∠ADC=∠AFC;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;③根据全等三角形的对应边相等得出CD=CF,根据线段垂直平分线的性质性质得出CF=CB,从而CD=CB;④由于△CEF≌△CEB,△ACD≌△ACF,根据全等三角形的面积相等易证S△ACE﹣2S△BCE=S△ADC.【详解】解:①在AE取点F,使EF=BE,∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=SKIPIF1<0(AB+AD),故①正确;②在AB上取点F,使BE=EF,连接CF.在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360﹣(∠ADC+∠B)=180°,故②正确;③由②知,△ACD≌△ACF,∴CD=CF,又∵CF=CB,∴CD=CB,故③正确;④易证△CEF≌△CEB,所以S△ACE﹣S△BCE=S△ACE﹣S△FCE=S△ACF,又∵△ACD≌△ACF,∴S△ACF=S△ADC,∴S△ACE﹣S△BCE=S△ADC,故④错误;即正确的有3个,故选:C.【点睛】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质,四边形的内角和定理,邻补角定义等知识点的应用,正确作辅助线是解此题的关键,综合性比较强,难度适中.【变式2】(2022秋·浙江杭州·八年级校联考阶段练习)如图,在SKIPIF1<0中,SKIPIF1<0,D为边AB的中点,E、F分别为边AC、BC上的点,且SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0______SKIPIF1<0,线段AB的长度SKIPIF1<0______.【答案】

45

SKIPIF1<0【分析】延长FD到M使得SKIPIF1<0,连接AM、EM,作SKIPIF1<0于N,先证明SKIPIF1<0,在SKIPIF1<0中求出EM,再证明SKIPIF1<0是等腰直角三角形即可解决问题.【详解】解:如图,延长FD到M使得SKIPIF1<0,连接AM、EM,作SKIPIF1<0于N.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0≌SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案为45,SKIPIF1<0.【点睛】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的判定和性质,解题的突破口是添加辅助线构造SKIPIF1<0以及倍长中线构造全等三角形.【变式3】(2022秋·山东滨州·八年级统考期中)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是________.【答案】120°【分析】延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N,要使得△AMN的周长最小,则三角形的三边要共线,根据∠BAD=120°和△AMN的内角和是180°即可列出方程求解.【详解】解:延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N如图所示,此时△AMN的周长最小∵∠ABM=90°∴∠EBM=90°在△AMB和△EMB中SKIPIF1<0∴△AMB≌△EMB∴∠BEM=∠BAM∴∠AMN=2∠BAM同理可得:△AND≌△FDN∴∠NAD=∠NFD∴∠ANM=2∠NAD设∠BAM=x,∠MAN=z,∠NAD=y∵∠BAD=120°∴SKIPIF1<0解得:SKIPIF1<0即∠AMN+∠ANM=2×60°=120°.故答案为:120°.【点睛】本题主要考查的是三角形周长最小的条件,涉及到的知识点为全等三角形的判定及性质、三角形内角和的应用,正确添加合适的辅助线是解题的关键.巩固训练一、单选题1.(2020秋·湖北黄石·八年级黄石八中校考期中)如图,AD是△ABC的中线,E是AD上一点,延长BE交AC于F,若BE=AC,BF=9,CF=6,则AF的长度为(

)A.1 B.1.5 C.2 D.3【答案】B【分析】延长AD到G使DG=AD,连接BG,通过SAS证明△ACD≌△GBD,根据全等三角形的性质可得到∠CAD=∠G,AC=BG,等量代换得到BE=BG,由等腰三角形的性质得到∠G=∠BEG,推出EF=AF即可得解决问题.【详解】解:如图,延长AD到G使DG=AD,连接BG,∵AD是△ABC的中线,∴CD=BD,在△ACD与△GBD中,SKIPIF1<0,∴△ACD≌△GBD(SAS),∴∠CAD=∠G,AC=BG,∵BE=AC,∴BE=BG,∴∠G=∠BEG,∵∠BEG=∠AEF,∴∠AEF=∠EAF.∴EF=AF,∴AF+CF=BF-EF=BF-AF,即AF+6=9-AF,∴AF=1.5.故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,利用中点作辅助线构造全等三角形是解题的关键.2.(2023·全国·九年级专题练习)如图,在四边形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0是SKIPIF1<0的中点,则SKIPIF1<0的长为(

).A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】C【分析】延长BE交CD延长线于P,可证△AEB≌△CEP,求出DP,根据勾股定理求出BP的长,从而求出BM的长.【详解】解:延长BE交CD延长线于P,∵AB∥CD,∴∠EAB=∠ECP,在△AEB和△CEP中,SKIPIF1<0∴△AEB≌△CEP(ASA)∴BE=PE,CP=AB=5又∵CD=3,∴PD=2,∵SKIPIF1<0∴SKIPIF1<0∴BE=SKIPIF1<0BP=SKIPIF1<0.故选:C.【点睛】考查了全等三角形的判定和性质和勾股定理,解题的关键是得恰当作辅助线构造全等,依据勾股定理求出BP.3.(2021春·浙江杭州·八年级杭州外国语学校校考期中)如图,在▱ABCD中,BE垂直平分CD于点E,且∠BAD=45°,AD=3,则▱ABCD的对角线AC的长为()A.SKIPIF1<0 B.5SKIPIF1<0 C.5SKIPIF1<0 D.2SKIPIF1<0【答案】A【分析】过C作CF⊥AB,交AB延长线于点F,连接BD,根据菱形的性质可知BC=BD=AD=3,由∠BAD=45°可知∠ABD=45°,∠ADB=90°,依据勾股定理,在Rt△ABD中,AB=SKIPIF1<0AD=SKIPIF1<0,由∠CBF=∠DAB=45°,∠F=90°得出FC=FB=SKIPIF1<0,在Rt△ACF中,根据勾股定理即可求出AC=SKIPIF1<0.【详解】解:如图所示,过C作CF⊥AB,交AB延长线于点F,连接BD,∵在▱ABCD中,BE垂直平分CD于点E,∴BC=BD=AD=3,又∵∠BAD=45°,∴∠ABD=45°,∠ADB=90°,∴Rt△ABD中,AB=SKIPIF1<0AD=SKIPIF1<0,∵∠CBF=∠DAB=45°,∠F=90°,∴∠BCF=45°,∴FC=FB=SKIPIF1<0,∴Rt△ACF中,SKIPIF1<0,故选:A.【点睛】本题考查平行四边形的性质、勾股定理、线段垂直平分线的性质,解题的关键是熟练掌握相关性质..4.(2022秋·浙江宁波·八年级校联考期中)如图,O为数轴原点,A,B两点分别对应SKIPIF1<0、3,作腰长为4的等腰SKIPIF1<0,连接SKIPIF1<0,以O为圆心,SKIPIF1<0长为半径画弧交数轴于点M,则点M对应的实数为()A.SKIPIF1<0 B.4 C.SKIPIF1<0 D.2.5【答案】A【分析】先利用数轴的性质,得到SKIPIF1<0,再根据等腰三角形的性质得到SKIPIF1<0,SKIPIF1<0,由勾股定理得到SKIPIF1<0,最后利用画法得到SKIPIF1<0,即可得到答案.【详解】解:SKIPIF1<0为数轴原点,A,B两点分别对应SKIPIF1<0、3,SKIPIF1<0,SKIPIF1<0是腰长为4的等腰三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0以O为圆心,SKIPIF1<0长为半径画弧交数轴于点M,SKIPIF1<0,SKIPIF1<0点M对应的实数为SKIPIF1<0,故选A.【点睛】本题考查了等腰三角形的性质,勾股定理等知识,熟练掌握等腰三角形三线合一的性质是解题关键.5.(2023秋·广东惠州·八年级校考期末)如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0于点SKIPIF1<0,SKIPIF1<0为SKIPIF1<0的中点,SKIPIF1<0为SKIPIF1<0上一动点.若SKIPIF1<0腰上的中线长是3.则SKIPIF1<0周长的最小值为()A.4 B.5 C.6 D.7【答案】B【分析】连接SKIPIF1<0,则SKIPIF1<0的长度即为SKIPIF1<0与SKIPIF1<0和的最小值,求出SKIPIF1<0的长,可得结论.【详解】解:如连接SKIPIF1<0,与SKIPIF1<0交于点SKIPIF1<0,此时SKIPIF1<0最小SKIPIF1<0,SKIPIF1<0是等腰三角形,SKIPIF1<0是中线,SKIPIF1<0于点D,SKIPIF1<0为SKIPIF1<0的中点,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的长就是SKIPIF1<0的最小值,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值是3,SKIPIF1<0周长的最小值SKIPIF1<0,故选:B.【点睛】本题考查的是最短线路问题及等边三角形的性质,解题的关键是熟知两点之间线段最短的知识.6.(2022秋·江苏无锡·八年级校联考期中)如图,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点D是BC的中点,将SKIPIF1<0沿AD翻折得到SKIPIF1<0,连结BE,则线段BE的长为()A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】延长AD交CE于点O,过点A作SKIPIF1<0于H,根据SKIPIF1<0运用勾股定理求出BC的长,利用SKIPIF1<0的面积求出AH的长,证明AD垂直平分线段CE,运用SKIPIF1<0与SKIPIF1<0面积相等求出OC的长,推出CE的长,证明SKIPIF1<0是直角三角形,在SKIPIF1<0中,利用勾股定理即可解决问题.【详解】延长AD交CE于点O,过点A作SKIPIF1<0于点H,在SKIPIF1<0中,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴AD垂直平分线段CE,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是直角三角形,在SKIPIF1<0中,SKIPIF1<0.故选:D.【点睛】本题主要考查了翻折变换,直角三角形的斜边中线,勾股定理等,解题的关键是添加辅助线,熟练掌握翻折性质,直角三角形的斜边中线的性质,三线合一,勾股定理解直角三角形,面积法求高.7.(2023秋·四川雅安·九年级校考期中)如图,在SKIPIF1<0中,点SKIPIF1<0分别是边SKIPIF1<0的中点,点SKIPIF1<0是线段SKIPIF1<0上的一点,连接SKIPIF1<0,SKIPIF1<0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论