版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省娄底市铃山中学高二数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个几何体的三视图及部分数据如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的体积为
(
)A.
B.C.
D.1
参考答案:A略2.为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔k为()A.50 B.60 C.30 D.40参考答案:D【考点】系统抽样方法.【分析】根据系统抽样的定义进行求解.【解答】解:由于800÷20=40,即分段的间隔k=40.故选:D.3.双曲线的渐近线方程为A.
B.
C.
D.参考答案:B略4.某车队准备从甲、乙等7辆车中选派4辆参加救援物资的运输工作,并按出发顺序前后排成一队,要求甲、乙至少有一辆参加,且若甲、乙同时参加,则它们出发时不能相邻,那么不同排法种数为()A.720 B.600 C.520 D.360参考答案:B【考点】D9:排列、组合及简单计数问题.【分析】利用分类加法计数原理、排列与组合的计算公式、“插空法”即可得出.【解答】解:由题意可分为以下3类:①只有甲汽车被选中,则可有=240种方法;②只有乙汽车被选中,则可有=240种方法;③若甲乙两辆汽车都被选中,且它们出发时不能相邻,则不同排法种数==120种方法.综上由分类加法计数原理可知:所要求的不同排法种数=240+240+120=600.故选B.【点评】熟练掌握分类加法计数原理、排列与组合的计算公式、“插空法”是解题的关键.5.下列双曲线中,焦点在y轴上且渐近线方程为y=±x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1参考答案:D【考点】双曲线的标准方程.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】求得焦点的位置,渐近线方程,即可得出结论.【解答】解:由题意,A,B焦点在x轴上,C,D焦点在y轴上,D渐近线方程为y=±x.故选:D.【点评】本题考查双曲线的几何性质,考查学生的计算能力,是基本知识的考查.6.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3) B.(﹣1,) C.(0,3) D.(0,)参考答案:A【考点】双曲线的标准方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.7.向量满足,且其夹角为,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:C【分析】根据向量模长与向量数量积的关系,结合充分条件和必要条件的定义进行判断即可.【详解】由得,得,即,得,即,则,即成立,反之当时,,则,即成立,即“”是“”的充要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,结合成立数量积与向量模长公式的关系是解决本题的关键.判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.8.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18 B.6 C.2 D.2参考答案:B【考点】7F:基本不等式.【分析】先判断3a与3b的符号,利用基本不等式建立关系,结合a+b=2,可求出3a+3b的最小值【解答】解:由于3a>0,3b>0,所以3a+3b===6.当且仅当3a=3b,a=b,即a=1,b=1时取得最小值.故选B9.数列满足,且,则=
(
)
A.10
B.11C.12
D.13参考答案:B10.下列函数既是奇函数,又在区间上单调递减的是A. B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.抛物线的准线方程是y=﹣1,则抛物线的标准方程是.参考答案:x2=4y【考点】抛物线的简单性质.【专题】计算题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】根据准线方程为y=﹣1,可知抛物线的焦点在y轴的正半轴,再设抛物线的标准形式为x2=2py,根据准线方程求出p的值,代入即可得到答案.【解答】解:由题意可知抛物线的焦点在y轴的正半轴,设抛物线标准方程为:x2=2py(p>0),∵抛物线的准线方程为y=﹣1,∴=1,∴p=2,∴抛物线的标准方程为:x2=4y.故答案为:x2=4y.【点评】本题主要考查抛物线的标准方程、抛物线的简单性质.属基础题.12.如图,P—ABCD是正四棱锥,是正方体,其中,则到平面PAD的距离为
.参考答案:313.已知平面上的线段及点,任取上一点,线段长度的最小值称为点到线段的距离,记作①若点,线段,则;②设是长为的定线段,则集合所表示的图形面积为;③若,,,,线段,,则到线段,距离相等的点的集合;④若,,,,线段,,则到线段,距离相等的点的集合.其中正确的有
.参考答案:①③④14.函数的定义域为A,若时总有,则称为单函数,例如:函数是单函数。 给出下列命题: ①函数是单函数; ②指数函数是单函数; ③若为单函数,; ④在定义域上具有单调性的函数一定是单函数。 其中的真命题是
。(写出所有的真命题的序号)参考答案:②③④略15.命题“存在x∈R,2x≤0”的否定是__________;参考答案:略16.如图所示,在正方体ABCD﹣A1B1C1D1中,O1、O为上、下底面的中心,在直线D1D、A1D、A1D1、C1D1、O1D与平面AB1C平行的直线有
条.参考答案:2【考点】空间中直线与直线之间的位置关系.【分析】DD1与平面AB1C相交;由A1D∥B1C,知A1D∥平面AB1C;A1D1与平面AB1C相交;C1D1与平面AB1C相交;由O1D∥OB1,知O1D∥平面AB1C.【解答】解:在正方体ABCD﹣A1B1C1D1中,O1、O为上、下底面的中心,∵DD1∥BB1,BB1∩平面AB1C=B1,∴DD1与平面AB1C相交;∵A1D∥B1C,AD1?平面AB1C,B1C?平面AB1C,∴A1D∥平面AB1C;A1D1∥B1C1,B1C1∩平面AB1C=B1,∴A1D1与平面AB1C相交;∵C1D1∥A1B1,A1B1∩平面AB1C=B1,∴C1D1与平面AB1C相交;∵O1D∥OB1,OB1?平面AB1C,∴O1D∥平面AB1C.∴在直线D1D、A1D、A1D1、C1D1、O1D与平面AB1C平行的直线有2条.故答案为:2.【点评】本题考查直线与平行的位置关系的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.17.过点P(-1,2)且与曲线y=3x2-4x+1在点M(1,1)处的切线平行的直线方程是________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某批发站全年分批购入每台价值为3000元的电脑共4000台,每批都购入x台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.参考答案:【考点】函数模型的选择与应用.【专题】证明题;函数思想;综合法;函数的性质及应用;不等式的解法及应用.【分析】根据条件建立运费和保管费的总费用y关于每批购入台数x的函数解析式,然后利用基本不等式进行解答.【解答】解:设全年需用去的运费和保管费的总费用为y元,题中的比例系数设为k,每批购入x台,则共需分批,每批价值3000x元.由题意知y=×360+3000kx,当x=400时,y=43600,解得k=,∴y=×360+100x≥2=24000(元)当且仅当×360=100x,即x=120时等号成立.此时x=120台,全年共需要资金24000元.故只需每批购入120台,可以使资金够用.【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.19.关于x的不等式kx2﹣6kx+k+8<0的解集为空集,求实数k的取值范围.参考答案:【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】先对x2前系数分类讨论,再利用一元二次不等式的解法即可得出.【解答】解:(1)当k=0时,原不等式化为8<0,其解集为?,∴k=0符合题意.(2)当k≠0时,要使二次不等式的解集为空集,则必须满足:解得0<k≤1综合(1)(2)得k的取值范围为[0,1].【点评】本题考查含参数的“形式”二次不等式的解法.关键是对x2前系数分类讨论.20.已知函数.(1)讨论的单调性;(2)若有两个零点,求的取值范围.参考答案:(1)当时,在单调递减,在单调递增,当时,在单调递增,在单调递减,当时,在单调递增,当时,在单调递增,在单调递减;(2).(i)设,则当时,;当时,.所以在单调递减,在单调递增.(ii)设,由得x=1或x=ln(-2a).①若,则,所以在单调递增.②若,则ln(-2a)<1,故当时,;当时,,所以在单调递增,在单调递减.③若,则,故当时,,当时,,所以在单调递增,在单调递减.(2)(i)设,则由(I)知,在单调递减,在单调递增.又,取b满足b<0且,则,所以有两个零点.(ii)设a=0,则所以有一个零点.(iii)设a<0,若,则由(I)知,在单调递增.又当时,<0,故不存在两个零点;若,则由(I)知,在单调递减,在单调递增.又当时<0,故不存在两个零点.综上,a的取值范围为.考点:利用导数研究函数的单调性;函数的零点判定定理.【方法点晴】本题主要考查了利用导数研究函数的单调性、函数的零点判定定理,其中解答中涉及到导数的运算、不等式的求解等知识点的考查,解答中求出的导数,讨论当,和三种情况分类讨论是解答关键,着重考查了分类讨论思想和函数与方程思想,以及转化与化归思想,试题有一定的难度,属于难题.21.设数列{bn}的前n项和为Sn,且bn=2﹣Sn;数列{an}为等差数列,且a5=9,a7=13.(Ⅰ)求数列{bn}的通项公式;(Ⅱ)若cn=bnan(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn.参考答案:【分析】(I)先计算b1,再判断{bn}为等比数列,从而得出通项公式;(II)求出an,cn,利用错位相减法求和.【解答】解:(Ⅰ)令n=1得b1=2﹣b1,∴b1=1,当n≥2时,bn﹣bn﹣1=Sn﹣1﹣Sn=﹣bn,∴bn=bn﹣1,∴{bn}是以1为首项,以为公比的等比数列,∴bn=.(Ⅱ)数列{an}的公差为d,则d=(a7﹣a5)=2,∴an=a5+(n﹣5)d=2n﹣1,∴cn=,∴Tn=1++++…+,①∴=+++…+,②①﹣②得:=1+1+++…+﹣=1+﹣=3﹣,∴Tn=6﹣.【点评】本题考查了等比数列的判断,等差数列的性质,错位相减法求和,属于中档题.22.若an+1=2an+1(n=1,2,3,…).且a1=1.(1)求a2,a3,a4,a5;(2)归纳猜想通项公式an并用数学归纳法证明.参考答案:【考点】R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《脊柱的运动解剖》课件
- 第6单元 科技文化与社会生活(A卷·知识通关练)(解析版)
- 中华传统文化宣传教育2
- 双十二时尚之道
- 驶向辉煌共创精彩
- 音乐制作师劳动合同三篇
- 深部护理科护士的工作总结
- 竞选班干部的演讲稿模板集锦八篇
- 2023年-2024年安全管理人员安全教育培训试题附答案(A卷)
- 2024年企业主要负责人安全培训考试题附参考答案【突破训练】
- 中餐烹饪实训室安全隐患分析
- 中医药养生保健服务方案设计
- 2024年菏泽单州市政工程集团有限公司招聘笔试参考题库附带答案详解
- 教育创新智慧课堂赋能学习
- 园林绿化员工培训课件
- 《雷达对抗原理》课件
- 《CT检查技术》课件-CT图像后处理
- 刑事辩护策略技巧案例
- 土壤检测报告表
- 2024年陕西西安高新区管委会工作人员招聘笔试参考题库附带答案详解
- 上海高端住宅市场分析报告
评论
0/150
提交评论