河南省焦作市广大中学高二数学理月考试题含解析_第1页
河南省焦作市广大中学高二数学理月考试题含解析_第2页
河南省焦作市广大中学高二数学理月考试题含解析_第3页
河南省焦作市广大中学高二数学理月考试题含解析_第4页
河南省焦作市广大中学高二数学理月考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省焦作市广大中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知P(B|A)=,P(A)=,则P(AB)等于()A. B. C. D.参考答案:C略2.不共面的四个定点到平面的距离都相等,这样的平面共有(

)个A.3个

B.4个

C.6个

D.7个参考答案:D空间中不共面的四个定点构成三棱锥,如图:三棱锥,①当平面一侧有一点,另一侧有三点时,即对此三棱锥进行换底,则三棱锥有四种表示形式,此时满足条件的平面个数是四个;②当平面一侧有两点,另一侧有两点时,即构成的直线是三棱锥的相对棱,因三棱锥的相对棱有三对,则此时满足条件的平面个数是三个,所以满足条件的平面共有个,故选D.

3.在中,角A、B、C的对应边分别为、、,若满足,的恰有两解,则的取值范围是

()A.

B. C. D.参考答案:C略4.,经计算得f(32)>.推测:当n≥2时,有()

A.f(2n-1)>

B.f(2n)>

C.f(2n)>

D.f(2n-1)>参考答案:B略5.已知函数,若过点且与曲线相切的切线方程为,则实数的值是(

)A.

B.

C.

D.参考答案:D6.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是()A.12

B.9C.8

D.6111]参考答案:B试题分析:根据题意,设阴影部分的面积为S,则正方形的面积为36,向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,则向正方形内随机投掷一点,其落到阴影部分的概率P=;而,则,解可得,S=9;1考点:模拟方法估计概率7.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A. B. C. D.参考答案:D【考点】椭圆的简单性质.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选D.8.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A. B. C. D.参考答案:B【考点】几何概型.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B9.在正三棱柱ABC-A1B1C1中,若AB=2,AA1=1,则点A到平面A1BC的距离为(

A.

B.

C.

D.参考答案:B略10.已知函数若在上单调递增,则实数的取值范围为(

)A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在正方体中,异面直线和所成的角的大小为__________.参考答案:12.书架上有4本不同的语文书,2本不同的数学书,从中任意取出2本,能取出数学书的概率为

。参考答案:13.如图所示,已知正方体,分别是正方形和的中心,则和所成的角是

.参考答案:连接DC1,E,F分别是正方形和的中心,所以E,F分别为的中点,故DC1//EF,则DC1与CD所成的角即为EF和CD所成的角,大小为.故答案为.

14.i是虚数单位,则=.参考答案:3﹣i考点:复数代数形式的乘除运算.专题:计算题.分析:利用两个复数代数形式的乘除法法则化简所给的式子,可得结果.解答:解:复数==3﹣i,故答案为3﹣i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.15.已知对任意正实数,,,都有,类比可得对任意正实数,,,,,都有

.参考答案:由任意正实数,都有,推广到则.

16.某公司安排甲、乙、丙、丁4人去上海、北京、深圳出差,每人仅出差一个地方,每个地方都需要安排人出差,若甲不安排去北京,则不同的安排方法有_____种.参考答案:24【分析】根据特殊问题优先考虑原则,可先安排除甲以外的人去北京,因此分两种情况:一人去北京或两人去北京,即可求出结果.【详解】若安排一人去北京,共有种;若安排两人去北京,共有种,总共24种.【点睛】本题主要考查排列组合问题,排列组合的常用策略:(1)特殊位置特殊元素优先考虑;(2)相邻问题捆绑策略;(3)不相邻问题插空策略;(4)定序问题倍缩原则;(5)均分问题除法原则;(6)相同元素隔板策略等.属于中档试题.17.已知,由不等式,启发我们归纳得到推广结论:,其中

.参考答案:nn略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=x2+ax﹣lnx.(Ⅰ)求f(x)的单调区间;(Ⅱ)设g(x)=f(x)+2lnx,F(x)=3g(x)﹣2xg′(x),若函数F(x)在定义域内有两个零点x1,x2,且x1<x2,求证:F′()<0.参考答案:【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求导根据导数和函数的单调性的关系即可求出,(Ⅱ)求导,根据中点坐标公式得到=﹣(x1+x2)+a+,①,分别把两个零点x1,x2,代入到F(x)中,转化,分离参数得到a﹣(x1+x2)=,再代入得到=[ln+],换元,构造函数得到h(t)=lnt+,根据导数求出h(t)的最大值,即可证明.【解答】解:(Ⅰ)函数的定义域为(0,+∞),∴f′(x)=2x+a﹣=,令f′(x)>0,得x>,f′(x)<0,得0<x<,∴函数f(x)在(,+∞)为增函数,在(0,)为减函数,(Ⅱ)由已知g(x)=f(x)+2lnx,∴F(x)=3g(x)﹣2xg′(x)=﹣x2+ax+3lnx﹣2,∴F′(x)=﹣2x+a+,即:=﹣(x1+x2)+a+,①∵函数F(x)在定义域内有两个零点x1,x2,∴﹣x12+ax1+3lnx1﹣2=0,②﹣x22+ax2+3lnx2﹣2=0,③②﹣③得﹣(x12﹣x22)+a(x1﹣x2)+3(lnx1﹣lnx2)=0可得(x1﹣x2)[a﹣(x1+x2)]+3ln=0,∴a﹣(x1+x2)=,代入①得:=+=[ln+]=[ln+],令=t,则0<t<1,∴h(t)=lnt+,∴h′(t)=+=﹣=≥0∴h(t)在(0,1)上为增函数,∴h(t)<h(1)=0,∵x1<x2,∴<0.19.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且,.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.参考答案:(1)详见解析(2)详见解析试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理.试题解析:证明:(1)在直三棱柱中,在三角形ABC中,因为D,E分别为AB,BC的中点,所以,于是,又因为DE平面平面,所以直线DE//平面.(2)在直三棱柱中,因为平面,所以,又因为,所以平面.因为平面,所以.又因为,所以.因为直线,所以【考点】直线与直线、直线与平面、平面与平面的位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.20.设数列是等比数列,,已知,

(1)求数列的首项和公比;(2)求数列的通项公式。参考答案:解:(1)

(2),

两式相减:

21.(本题满分14分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示.(1)求函数f(x)的单调递减区间;(2)求函数f(x)在区间上的取值范围.

参考答案:(1)由图象得A=2.最小正周期T=.,

……………4分由得,,又得,所以,所求函数的解析式为.………6分由得.所以,函数的单调减区间为.……………8分(2),即的取值范围是.…………14分22.给出命题p:a(1﹣a)>0;命题q:y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果命题“p∨q”为真,“p∧q”为假,求a的取值范围.参考答案:【考点】复合命题的真假.【分析】先求出命题p,q为真命题时对应的等价条件,然后利用p∧q为假命题,p∨q为真命题,确定a的取值范围.【解答】解:命题p为真?a(1﹣a)>0?0<a<1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)命题q为真,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论