河北省唐山市职业技术高级中学2022年高二数学理模拟试题含解析_第1页
河北省唐山市职业技术高级中学2022年高二数学理模拟试题含解析_第2页
河北省唐山市职业技术高级中学2022年高二数学理模拟试题含解析_第3页
河北省唐山市职业技术高级中学2022年高二数学理模拟试题含解析_第4页
河北省唐山市职业技术高级中学2022年高二数学理模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市职业技术高级中学2022年高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.对于平面和异面直线,,下列命题中真命题是(

).A.存在平面,使, B.存在平面,使,C.存在平面,满足, D.存在平面,满足,参考答案:D选项,如果存在平面,使,,则,与,是异面直线矛盾,故不成立;选项,如果存在平面,使,则,共面,与,是异面直线矛盾,故不成立;选项,存在平面,满足,,则,因为,是任意两条异面直线,不一定满足,故不成立;选项,存在平面,使,,故成立.综上所述,故选.2.y=4cosx﹣e|x|图象可能是()A. B. C. D.参考答案:D【考点】3O:函数的图象.【分析】判断函数的奇偶性,计算函数与y轴的交点坐标即可判断出答案.【解答】解:显然y=4cosx﹣e|x|是偶函数,图象关于y轴对称,排除A,C;又当x=0时,y=4﹣1=3>0,排除B,故选D.3.已知命题“?a,b∈R,如果ab>0,则a>0”,则它的逆否命题是()A.?a,b∈R,如果ab<0,则a<0 B.?a,b∈R,如果a≤0,则ab≤0C.?a,b∈R,如果ab<0,则a<0 D.?a,b∈R,如果a≤0,则ab≤0参考答案:B【考点】四种命题.【分析】命题的逆否命题是条件与结论交换并且否定,故可得答案.【解答】解:命题的逆否命题是条件与结论交换并且否定,故命题“?a,b∈R,如果ab>0,则a>0”,则它的逆否命题“?a,b∈R,如果a≤0,则ab≤0“故选:B4.过双曲线的一个焦点作垂直于实轴的弦,是另一焦点,若是钝角三角形,则双曲线的离心率范围是(

)A.

B.

C.

D.参考答案:C5.曲线y=cosx(0≤x≤2π)与直线y=1所围成的图形面积是()A.2π

B.3π

C.

D.π参考答案:A略6.设a∈R,若函数y=eax+2x,x∈R有大于零的极值点,则()A.a<﹣2 B.a>﹣2 C.a>﹣ D.a<﹣参考答案:A【考点】利用导数研究函数的极值.【分析】f′(x)=aeax+2=0,当a≥0无解,无极值.当a<0时,x=ln(﹣),由于函数y=eax+2x,x∈R有大于零的极值点,可得a的取值范围.【解答】解:f′(x)=aeax+3,令f′(x)=0即aeax+2=0,当a≥0无解,∴无极值.当a<0时,x=ln(﹣),当x>ln(﹣),f′(x)>0;x<ln(﹣)时,f′(x)<0.∴ln(﹣)为极大值点,∴ln(﹣)>0,解之得a<﹣2,故选:A.7.(5分)已知,则导函数f′(x)是() A.仅有最小值的奇函数 B. 既有最大值,又有最小值的偶函数 C.仅有最大值的偶函数 D. 既有最大值,又有最小值的奇函数参考答案:D8.若是任意实数,则方程x2+4y2sin=1所表示的曲线一定不是(

)A.圆

B.双曲线

C.直线

D.抛物线参考答案:D略8.一只小蜜蜂在一个棱长为30的正方体玻璃容器内随意地飞行,若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个面的距离不大于10,则就有可能撞到玻璃上而不安全,若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的.假设蜜蜂在正方体玻璃容器内飞行到每一位置的可能性相同,那么蜜蜂飞行是安全的概率是()A. B. C. D.参考答案:C10.将函数的图像向右平移个单位,再将图像上每一点的横坐标缩短到原来的倍,所得图像关于直线对称,则的最小正值为(

)A.B.C.D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知集合的定义域为Q,若,则实数a的取值范围是

。参考答案:12.已知椭圆的两个焦点是F1、F2,满足=0的点M总在椭圆的内部,则椭圆的离心率的取值范围是

参考答案:略13.函数的单调递减区间为______________,其最小值是_____________.参考答案:,

14.向边长为2的正方形内随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点A的距离不大于1的区域内(图中阴影区域),由此可估计π的近似值为______.(保留四位有效数字)参考答案:3.149【分析】根据已知条件求出满足条件的正方形的面积,及到顶点的距离不大于1的区域(图中阴影区域)的面积比值等于频率即可求出答案.【详解】依题意得,正方形的面积,阴影部分的面积,故落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的概率,随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的频率为:,即有:,解得:,故答案为3.149.【点睛】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件的基本事件对应的“几何度量”(A),再求出总的基本事件对应的“几何度量”,最后根据求解.利用频率约等于概率,即可求解。15.集合中所有3个元素的子集的元素和为__________.参考答案:【分析】集合A中所有元素被选取了次,可得集合中所有3个元素的子集的元素和为即可得结果.【详解】集合中所有元素被选取了次,∴集合中所有3个元素的子集的元素和为,故答案为.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.16.右上边程序执行后输出的结果是------------------------------------(

)A、

B、

C、

D、参考答案:B略17.若x,y满足约束条件,则的最大值为

.参考答案:

12

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本大题12分)已知等比数列中,且,,成等差数列,(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项的和.参考答案:19.(2016秋?温江区期末)某公司2017年元旦晚会现场,为了活跃气氛,将在晚会节目表演过程中进行抽奖活动.(1)现需要从第一排就座的6位嘉宾A、B、C、D、E、F中随机抽取2人上台抽奖,求嘉宾A和嘉宾B至少有一人上台抽奖的概率;(2)抽奖活动的规则是:嘉宾通过操作按键使电脑自动产生两个[0,1]之间的随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该嘉宾中奖;若电脑显示“谢谢”,则不中奖.求该嘉宾中奖的概率.参考答案:【考点】程序框图;列举法计算基本事件数及事件发生的概率.【分析】(1)根据古典概型的概率公式,可得A和B至少有一人上台抽奖的概率;(2)确定满足0≤x≤1,0≤y≤1点的区域,由条件,到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:(1)6位嘉宾,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(2)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件,得到的区域为图中的阴影部分,由2x﹣y﹣1=0,令y=0,可得x=,令y=1,可得x=1,∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为S阴=(1+)×1=.∴该代表中奖的概率为=.【点评】本题考查概率与统计知识,考查分层抽样,考查概率的计算,确定概率的类型是关键,属于基础题.20.如图,已知四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(1)证明:PA∥平面BDE;(2)求二面角B﹣DE﹣C的余弦值.参考答案:【考点】MR:用空间向量求平面间的夹角;LS:直线与平面平行的判定.【分析】(1)法一:连接AC,设AC与BD交于O点,连接EO.由底面ABCD是正方形,知OE∥PA由此能够证明PA∥平面BDE.法二:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,设PD=DC=2,则,设是平面BDE的一个法向量,由向量法能够证明PA∥平面BDE.(2)由(1)知是平面BDE的一个法向量,又是平面DEC的一个法向量.由向量法能够求出二面角B﹣DE﹣C的余弦值.【解答】(1)解法一:连接AC,设AC与BD交于O点,连接EO.∵底面ABCD是正方形,∴O为AC的中点,又E为PC的中点,∴OE∥PA,∵OE?平面BDE,PA?平面BDE,∴PA∥平面BDE.解法二:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,设PD=DC=2,则A(2,0,0),P(0,0,2),E(0,1,1),B(2,2,0).∴,设是平面BDE的一个法向量,则由,得,∴.∵,∴,又PA?平面BDE,∴PA∥平面BDE.(2)由(1)知是平面BDE的一个法向量,又是平面DEC的一个法向量.设二面角B﹣DE﹣C的平面角为θ,由题意可知.∴.【点评】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,是高考的重点题型.解题时要认真审题,仔细解答,注意向量法的合理运用.21.(16分)如图,在平面直角坐标系xOy中,点P(1,)和动点Q(m,n)都在离心率为的椭圆(a>b>0)上,其中m<0,n>0.(1)求椭圆的方程;(2)若直线l的方程为3mx+4ny=0,点R(点R在第一象限)为直线l与椭圆的一个交点,点T在线段OR上,且QT=2.①若m=﹣1,求点T的坐标;②求证:直线QT过定点S,并求出定点S的坐标.参考答案:【考点】椭圆的简单性质.【分析】(1)由离心率,a=2c,,点在椭圆上,代入即可求得c的值,即可求得椭圆方程;(2)①设,由|QT|=2,由两点直线的距离公式可知:,将Q点代入椭圆方程,,代入,由m=﹣1,即可求得T点坐标;②由①可知,,利用斜率公式可知:kQT=,直线QT的方程为,即,直线QT过定点(1,0).【解答】解:(1)由题意,椭圆(a>b>0)焦点在x轴上,离心率,∴a=2c,,∵点在椭圆上,∴,解得:c=1,∴,∴椭圆C的标准方程为;…(2)①设,其中0<t<2,∵|QT|=2,∴,即,(*)

…(7分)∵点Q(m,n)在椭圆上,∴,则,代入(*)式,得,,∴或,∵0<t<2,∴,…(9分)∴,由题意,m=﹣1,∴,∵n>0,∴,则T点坐标,…(11分)②证明:由①可知,,∴直线QT的斜率,…(13分)∴直线QT的方程为,即,∴直线QT过定点S(1,0).…(16分)【点评】本题考查椭圆的标准方程及简单几何性质,考查只有与椭圆的位置关系,直线的斜率公式,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论