河南省商丘市梁园区2023年数学九上期末监测试题含解析_第1页
河南省商丘市梁园区2023年数学九上期末监测试题含解析_第2页
河南省商丘市梁园区2023年数学九上期末监测试题含解析_第3页
河南省商丘市梁园区2023年数学九上期末监测试题含解析_第4页
河南省商丘市梁园区2023年数学九上期末监测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省商丘市梁园区2023年数学九上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知a是方程x2+3x﹣1=0的根,则代数式a2+3a+2019的值是()A.2020 B.﹣2020 C.2021 D.﹣20212.如图,点,分别在反比例函数,的图象上.若,,则的值为()A. B. C. D.3.如图,已知菱形OABC,OC在x轴上,AB交y轴于点D,点A在反比例函数上,点B在反比例函数上,且OD=2,则k的值为()A.3 B. C. D.4.如右图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在格点上,则的值为()A. B. C. D.5.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上 B.点M在⊙C内 C.点M在⊙C外 D.点M不在⊙C内6.如图所示几何体的左视图正确的是()A. B. C. D.7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=15008.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为()A.相切 B.相交C.相离 D.不能确定9.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A. B.C. D.10.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5,6,9,另一个三角形的最长边长为4.5,则它的最短边长是()A. B. C. D.11.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个 B.4个 C.1个 D.2个12.如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()A. B.C.或 D.或二、填空题(每题4分,共24分)13.如图,已知菱形中,,为钝角,于点,为的中点,连接,.若,则过、、三点的外接圆半径为______.14.定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是_____.15.抛物线y=x2+2x+3的顶点坐标是_____________.16.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外其它都相同,任意摸出一个球,摸到黑球的概率是__________.17.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是________.18.如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若BE=,则AP的长为_____.三、解答题(共78分)19.(8分)如图,函数y=2x和y=﹣x+4的图象相交于点A,(1)求点A的坐标;(2)根据图象,直接写出不等式2x≥﹣x+4的解集.20.(8分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.21.(8分)如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为1.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)求反比例函数y=与直线y=x+m的函数关系式(2)求梯形ABCD的面积.22.(10分)网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.23.(10分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.24.(10分)(1)计算(2)解不等式组:25.(12分)如图,在平面直角坐标系中,将绕点顺指针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下午……,若点,,则点的横坐标为__________.26.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到县城城南大道的距离为米的点处.这时,一辆出租车由西向东匀速行驶,测得此车从处行驶到处所用的时间为秒,且,.求、之间的路程;请判断此出租车是否超过了城南大道每小时千米的限制速度?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键2、A【分析】分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,根据点A所在的图象可设点A的坐标为(),根据相似三角形的判定证出△BDO∽△OCA,列出比例式即可求出点B的坐标,然后代入中即可求出的值.【详解】解:分别过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∵点在反比例函数,设点A的坐标为(),则OC=x,AC=,∴∠BDO=∠OCA=90°∵∴∠BOD+∠AOC=180°-∠AOB=90°,∠OAC+∠AOC=90°∴∠BOD=∠OAC∴△BDO∽△OCA∴解得:OD=2AC=,BD=2OC=2x,∵点B在第二象限∴点B的坐标为()将点B坐标代入中,解得故选A.【点睛】此题考查的是求反比例函数解析式相似三角形的判定及性质,掌握用待定系数法求反比例函数的解析式和构造相似三角形的方法是解决此题的关键.3、B【分析】由OD=,则点A、B的纵坐标为,得到A(,),B(,),求得AB=AO=,AD=,根据勾股定理即可得到结论.【详解】解:∵四边形OABC是菱形,∴AB∥OC,AB=AO,∵OD=,∴点A、B的纵坐标为,∴A(,),B(,),∴AB=,AD=,∴AO=,在Rt△AOD中,由勾股定理,得,∴,解得:;故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.4、A【分析】过作于,首先根据勾股定理求出,然后在中即可求出的值.【详解】如图,过作于,则,=1..故选:A.【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线构造直角三角形是解题的关键.5、A【解析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选A.【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.6、A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图7、A【详解】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选A.8、B【分析】先解方程求得d,根据圆心到直线的距离d与圆的半径r之间的关系即可解题.【详解】解方程:x2–x–6=0,即:,解得,或(不合题意,舍去),

当时,,则直线与圆的位置关系是相交;故选:B【点睛】本题考查了直线与圆的位置关系,只要比较圆心到直线的距离和半径的大小关系.没有交点,则;一个交点,则;两个交点,则.9、A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.10、B【分析】根据题意可得出两个三角形相似,利用最长边数值可求出相似比,再用三角形的最短边乘以相似比即可.【详解】解:由题意可得出:两个三角形的相似比为:,所以另一个三角形最短边长为:.故选:B.【点睛】本题考查的知识点是相似三角形的相似比,根据题目求出两个三角形的相似比是解此题的关键.11、D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.12、D【解析】显然当y1>y2时,正比例函数的图象在反比例函数图象的上方,结合图形可直接得出结论.【详解】∵正比例函数y1=k1x的图象与反比例函数的图象交于A(-1,-2),B(1,2)点,

∴当y1>y2时,自变量x的取值范围是-1<x<0或x>1.

故选:D.【点睛】本题考查了反比例函数与一次函数的交点问题,数形结合的思想是解题的关键.二、填空题(每题4分,共24分)13、【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM长,根据圆的性质即可求解.【详解】如图,延长MN交DA延长线于点E,过D作DF⊥BC交BC延长线于F,连接MD,∵四边形ABCD是菱形,∴AB=BC=CD=4,AD∥BC,∴∠E=∠EMB,∠EAN=∠NBM,∵AN=BN,∴△EAN≌BMN,∴AE=BM,EN=MN,∵,∴DN⊥EM,∴DE=DM,∵AM⊥BC,DF⊥BC,AB=DC,AM=DF∴△ABM≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt△DMF中,由勾股定理得,DF2=DM2-MF2=(4+x)2-42,在Rt△DCF中,由勾股定理得,DF2=DC2-CF2=42-x2,∴(4+x)2-42=42-x2,解得,x1=,x2=(不符合题意,舍去)∴DM=,∴∴过、、三点的外接圆的直径为线段DM,∴其外接圆的半径长为.故答案为:.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.14、【分析】如图所示,,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间不含点,即可求解.【详解】解:,故抛物线的顶点为:;抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,∴,如图所示,图象实心点为8个“整点”,则符合条件的抛物线过点和点上方,并经过点和点下方,当抛物线过点上方时,,解得:;当抛物线过点上方时,,解得:;当抛物线过点下方时,,解得:;当抛物线过点下方时,,解得:;∵四个条件同时成立,∴故答案为:.【点睛】本题考查根据二次函数的图象确定二次函数的字母系数的取值范围.找出包含“整点”的位置,利用数形结合的数学思想是解题的关键,难度较大.15、(﹣1,2)【详解】解:将二次函数转化成顶点式可得:y=,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【点睛】本题考查二次函数的顶点坐标.16、【解析】袋子中一共有3个球,其中有2个黑球,根据概率公式直接进行计算即可.【详解】袋子中一共有3个球,其中有2个黑球,所以任意摸出一个球,摸到黑球的概率是,故答案为:.【点睛】本题考查了简单的概率计算,熟练掌握概率的计算公式是解题的关键.17、32【解析】分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑.①当3为等腰三角形的腰时,将x=3代入原方程可求出k的值,再利用分解因式法解一元二次方程可求出等腰三角形的底,由三角形的三边关系可确定此情况不存在;②当3为等腰三角形的底时,由方程的系数结合根的判别式可得出△=144﹣4k=0,解之即可得出k值,进而可求出方程的解,再利用三角形的三边关系确定此种情况符合题意.此题得解.【详解】①当3为等腰三角形的腰时,将x=3代入原方程得1﹣12×3+k=0,解得:k=27,此时原方程为x2﹣12x+27=0,即(x﹣3)(x﹣1)=0,解得:x1=3,x2=1.∵3+3=2<1,∴3不能为等腰三角形的腰;②当3为等腰三角形的底时,方程x2﹣12x+k=0有两个相等的实数根,∴△=(﹣12)2﹣4k=144﹣4k=0,解得:k=32,此时x1=x22.∵3、2、2可以围成等腰三角形,∴k=32.故答案为32.【点睛】本题考查了解一元二次方程-因式分解法、根的判别式、三角形的三边关系以及等腰三角形的性质,分3为等腰三角形的腰与3为等腰三角形的底两种情况考虑是解题的关键.18、【解析】设AB=a,AD=b,则ab=32,构建方程组求出a、b值即可解决问题.【详解】设AB=a,AD=b,则ab=32,由∽可得:,∴,∴,∴,,设PA交BD于O,在中,,∴,∴,故答案为.【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.三、解答题(共78分)19、(1)A的坐标为(,3);(2)x≥.【解析】试题分析:(1)联立两直线解析式,解方程组即可得到点A的坐标;(2)根据图形,找出点A右边的部分的x的取值范围即可.试题解析:(1)由,解得:,∴A的坐标为(,3);(2)由图象,得不等式2x≥-x+4的解集为:x≥.20、(1)①;②1.5;(2)①5;②、,、5.【解析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半径是5.②如图,与矩形的一边相切有4种情况,如图1,当与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半径为.如图2,当与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,,解得(舍去),,∴ON=,∴半径为.如图3,当与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y,则OM=OP=OQ=4-1-y=3-y,由勾股定理得,,解得(舍去),,∴OM=,∴半径为.如图4,当与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴半径为5.综上所述,若与矩形的一边相切,为的半径,,,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.21、(1)y=,y=x-4(2)s=6.5【解析】考点:反比例函数综合题.分析:(1)由于反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),则把A(6,2)分别代入两个解析式可求出k与b的值,从而确定反比例函数y=与直线y=x+m的函数关系式;(2)先把点A的横坐标为2,点B的横坐标为1代入y=x-4中得到对应的纵坐标,则可确定A点坐标为(2,-2),点B的坐标为(1,-1),由AD、BC平行于y轴可得点D的横坐标为2,点C的横坐标为1,然后把它们分别代入y=中,可确定D点坐标为(2,6),点C的坐标为(1,4),然后根据梯形的面积公式计算即可.解:(1)∵点P(6,2)在反比例函数y=的图象上,∴k=6×2=12,∴反比例函数的解析式为y=;∵点P(6,2)在直线y=x+m上,∴6+m=2,解得m=-4,∴直线的解析式为y=x-4;(2)∵点A、B在直线y=x-4上,∴当x=2时,y=2-4=-2,当x=1时,y=1-4=-1,∴A点坐标为(2,-2),点B的坐标为(1,-1),又∵AD、BC平行于y轴,∴点D的横坐标为2,点C的横坐标为1,而点D、C为反比例函数y=的图象上,∴当x=2,则y=6,当x=1,则y=4,∴D点坐标为(2,6),点C的坐标为(1,4),∴DA=6-(-2)=8,CB=4-(-1)=5,∴梯形ABCD的面积=×(8+5)×1=.22、2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x,根据该平台2017年及2019年的交易额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x,根据题意得:,解得:,(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.23、(1)y=﹣x2+x+2(2)(,4)或(,)或(,﹣)(3)(2,1)【解析】(1)利用待定系数法转化为解方程组即可.(2)如图1中,分两种情形讨论①当CP=CD时,②当DP=DC时,分别求出点P坐标即可.(3)如图2中,作CM⊥EF于M,设则(0≤a≤4),根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论