黑龙江哈尔滨师范大学附中2024届高考数学三模试卷含解析_第1页
黑龙江哈尔滨师范大学附中2024届高考数学三模试卷含解析_第2页
黑龙江哈尔滨师范大学附中2024届高考数学三模试卷含解析_第3页
黑龙江哈尔滨师范大学附中2024届高考数学三模试卷含解析_第4页
黑龙江哈尔滨师范大学附中2024届高考数学三模试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江哈尔滨师范大学附中2024届高考数学三模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为()A. B. C. D.2.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A. B.C. D.3.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.4.已知,则()A. B. C. D.5.若函数,在区间上任取三个实数,,均存在以,,为边长的三角形,则实数的取值范围是()A. B. C. D.6.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.57.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.8.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多9.已知复数是正实数,则实数的值为()A. B. C. D.10.若复数()是纯虚数,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.设复数满足,则在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若复数满足,复数的共轭复数是,则()A.1 B.0 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在的函数满足,且当时,,则的解集为__________________.14.过直线上一点作圆的两条切线,切点分别为,,则的最小值是______.15.某四棱锥的三视图如图所示,那么此四棱锥的体积为______.16.已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4sin(θ+).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于M,N两点,求△MON的面积.18.(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,19.(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.20.(12分)在数列中,已知,且,.(1)求数列的通项公式;(2)设,数列的前项和为,证明:.21.(12分)已知数列和,前项和为,且,是各项均为正数的等比数列,且,.(1)求数列和的通项公式;(2)求数列的前项和.22.(10分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

求出满足条件的正的面积,再求出满足条件的正内的点到顶点、、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案.【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题.2、C【解析】

先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.3、D【解析】

根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.4、D【解析】

根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,,所以,,所以A,B两项均错;又,所以,所以C错;对于D,,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.5、D【解析】

利用导数求得在区间上的最大值和最小,根据三角形两边的和大于第三边列不等式,由此求得的取值范围.【详解】的定义域为,,所以在上递减,在上递增,在处取得极小值也即是最小值,,,,,所以在区间上的最大值为.要使在区间上任取三个实数,,均存在以,,为边长的三角形,则需恒成立,且,也即,也即当、时,成立,即,且,解得.所以的取值范围是.故选:D【点睛】本小题主要考查利用导数研究函数的最值,考查恒成立问题的求解,属于中档题.6、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.7、D【解析】

利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.8、D【解析】

根据两个图形的数据进行观察比较,即可判断各选项的真假.【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多.故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.9、C【解析】

将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为为正实数,所以且,解得.故选:C【点睛】本题考查复数的基本定义,属基础题.10、B【解析】

化简复数,由它是纯虚数,求得,从而确定对应的点的坐标.【详解】是纯虚数,则,,,对应点为,在第二象限.故选:B.【点睛】本题考查复数的除法运算,考查复数的概念与几何意义.本题属于基础题.11、C【解析】

化简得到,得到答案.【详解】,故,对应点在第三象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.12、C【解析】

根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可.【详解】解:∵,∴,则,∴,故选:C.【点睛】本题主要考查复数代数形式的运算法则,考查共轭复数的概念,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由已知得出函数是偶函数,再得出函数的单调性,得出所解不等式的等价的不等式,可得解集.【详解】因为定义在的函数满足,所以函数是偶函数,又当时,,得时,,所以函数在上单调递减,所以函数在上单调递减,函数在上单调递增,所以不等式等价于,即或,解得或,所以不等式的解集为:.故答案为:.【点睛】本题考查抽象函数的不等式的求解,关键得出函数的奇偶性,单调性,属于中档题.14、【解析】

由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【详解】由题可知,,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.15、【解析】

利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【详解】如图:此四棱锥的高为,底面是长为,宽为2的矩形,所以体积.所以本题答案为.【点睛】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断.16、【解析】

通过设出A点坐标,可得C点坐标,通过∥轴,可得B点坐标,于是再利用可得答案.【详解】根据题意,可设点,则,由于∥轴,故,代入,可得,即,由于在线段上,故,即,解得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线l的普通方程为x+y-4=0.曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)4【解析】

(1)将直线l参数方程中的消去,即可得直线l的普通方程,对曲线C的极坐标方程两边同时乘以,利用可得曲线C的直角坐标方程;(2)求出点到直线的距离,再求出的弦长,从而得出△MON的面积.【详解】解:(1)由题意有,得,x+y=4,直线l的普通方程为x+y-4=0.因为ρ=4sin所以ρ=2sinθ+2cosθ,两边同时乘以得,ρ2=2ρsinθ+2ρcosθ,因为,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲线C的直角坐标方程是圆:(x-)2+(y-1)2=4.(2)∵原点O到直线l的距离直线l过圆C的圆心(,1),∴|MN|=2r=4,所以△MON的面积S=|MN|×d=4.【点睛】本题考查了直线与圆的极坐标方程与普通方程、参数方程与普通方程的互化知识,解题的关键是正确使用这一转化公式,还考查了直线与圆的位置关系等知识.18、(1)选取更合适;(2);(3)时,煤气用量最小.【解析】

(1)根据散点图的特点,可得更适合;(2)先建立关于的回归方程,再得出关于的回归方程;(3)写出函数关系,利用基本不等式得出最小值及其成立的条件.【详解】(1)选取更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型;(2)由公式可得:,,所以所求回归直线方程为:;(3)根据题意,设,则煤气用量,当且仅当时,等号成立,即时,煤气用量最小.【点睛】此题考查根据题意求回归方程,利用线性回归方程的求法得解,结合基本不等式求最值.19、【解析】

由不存在逆矩阵,可得,再利用特征多项式求出特征值3,0,,利用矩阵乘法运算即可.【详解】因为不存在逆矩阵,,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以【点睛】本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.20、(1);(2)见解析.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论