2021-2023年全国高考数学典例真题汇编(新高考模式训练)50_第1页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)50_第2页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)50_第3页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)50_第4页
2021-2023年全国高考数学典例真题汇编(新高考模式训练)50_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)50姓名:___________班级:___________一.单选题1.【2022-全国II卷数学高考真题】()A. B. C. D.2.【2021-新高考Ⅰ卷】已知,则()A. B. C. D.3.【2023-全国数学乙卷(文)高考真题】如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24 B.26 C.28 D.304.【2022-全国甲卷数学高考真题】当时,函数取得最大值,则()A. B. C. D.15.【2023-全国数学甲卷(文)高考真题】执行下边的程序框图,则输出的()A21 B.34 C.55 D.896.【2022-全国II卷数学高考真题】正三棱台高为1,上下底边长分别为和,所有顶点在同一球面上,则球的表面积是()A. B. C. D.7.【2021-全国甲卷(理)】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间8.【2021-全国甲卷(理)】已如A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为()A. B. C. D.二.多选题9.【2021-新高考Ⅰ卷】有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同10.【2021-全国新高II卷】如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是()A. B.C. D.11.【2021-全国新高II卷】设正整数,其中,记.则()A. B.C. D.三.填空题12.【2021-全国新高II卷】已知双曲线的离心率为2,则该双曲线的渐近线方程为_______________13.【2022-北京数学高考真题】若函数的一个零点为,则________;________.14.【2022-天津数学高考真题】已知是虚数单位,化简的结果为_______.四.解答题15.【2022-北京数学高考真题】在中,.(1)求;(2)若,且的面积为,求的周长.16.【2021-北京数学高考真题】已知正方体,点为中点,直线交平面于点.(1)证明:点为的中点;(2)若点为棱上一点,且二面角的余弦值为,求的值.17.【2023-新课标全国Ⅰ卷真题】已知函数.(1)讨论的单调性;(2)证明:当时,.18.【2022-北京数学高考真题】已知函数.(1)求曲线在点处的切线方程;(2)设,讨论函数在上的单调性;(3)证明:对任意的,有.19.【2022-浙江卷数学高考真题】设函数.(1)求的单调区间;(2)已知,曲线上不同三点处的切线都经过点.证明:(ⅰ)若,则;(ⅱ)若,则.(注:是自然对数的底数)答案第1页,共SECTIONPAGES1页2021-2023年全国高考数学典例真题汇编(新高考模式训练)50【参考答案】1.答案:D解析:,故选:D.2.答案:C解析:因为,故,故故选:C.3.答案:D解析:如图所示,在长方体中,,,点为所在棱上靠近点的三等分点,为所在棱的中点,则三视图所对应的几何体为长方体去掉长方体之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:.故选:D.4.答案:B解析:因为函数定义域为,所以依题可知,,,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.故选:B.5.答案:B解析:当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;当时,判断框条件不满足,跳出循环体,输出.故选:B.6.答案:A解析:设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.7.答案:C解析:因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于.8.答案:A解析:,为等腰直角三角形,,则外接圆的半径为,又球的半径为1,设到平面的距离为,则,所以.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.9.答案:CD解析:A:且,故平均数不相同,错误;B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;C:,故方差相同,正确;D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;故选:CD10.答案:BC解析:设正方体的棱长为,对于A,如图(1)所示,连接,则,故(或其补角)为异面直线所成的角,直角三角形,,,故,故不成立,故A错误.对于B,如图(2)所示,取的中点为,连接,,则,,由正方体可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正确.对于C,如图(3),连接,则,由B的判断可得,故,故C正确.对于D,如图(4),取的中点,的中点,连接,则,因为,故,故,所以或其补角为异面直线所成的角,因为正方体的棱长为2,故,,,,故不是直角,故不垂直,故D错误.故选:BC.11.答案:ACD解析:对于A选项,,,所以,,A选项正确;对于B选项,取,,,而,则,即,B选项错误;对于C选项,,所以,,,所以,,因此,,C选项正确;对于D选项,,故,D选项正确.故选:ACD.12.答案:解析:因为双曲线的离心率为2,所以,所以,所以该双曲线的渐近线方程为.故答案为:.【点睛】本题考查了双曲线离心率的应用及渐近线的求解,考查了运算求解能力,属于基础题.13.答案:①.1②.解析:∵,∴∴故答案为:1,

14.答案:##解析:.故答案为:.

15.答案:(1)(2)解析:(2)利用三角形的面积公式可求得的值,由余弦定理可求得的值,即可求得的周长.【小问1详解】解:因为,则,由已知可得,可得,因此,.【小问2详解】解:由三角形的面积公式可得,解得.由余弦定理可得,,所以,的周长为.16.答案:(1)证明见解析;(2).解析:(2)建立空间直角坐标系,利用空间直角坐标系求得相应平面的法向量,然后解方程即可求得实数的值.(1)如图所示,取的中点,连结,由于为正方体,为中点,故,从而四点共面,即平面CDE即平面,据此可得:直线交平面于点,当直线与平面相交时只有唯一的交点,故点与点重合,即点为中点.(2)以点为坐标原点,方向分别为轴,轴,轴正方形,建立空间直角坐标系,不妨设正方体的棱长为2,设,则:,从而:,设平面的法向量为:,则:,令可得:,设平面的法向量为:,则:,令可得:,从而:,则:,整理可得:,故(舍去).【点睛】本题考查了立体几何中的线面关系和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.17.答案:(1)答案见解析(2)证明见解析解析:(2)方法一:结合(1)中结论,将问题转化为的恒成立问题,构造函数,利用导数证得即可.方法二:构造函数,证得,从而得到,进而将问题转化为的恒成立问题,由此得证.【小问1详解】因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;当时,令,解得,当时,,则在上单调递减;当时,,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.【小问2详解】方法一:由(1)得,,要证,即证,即证恒成立,令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.18.答案:(1)(2)在上单调递增.(3)证明见解析解析:(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,即得证.【小问1详解】解:因为,所以,即切点坐标为,又,∴切线斜率∴切线方程为:【小问2详解】解:因为,所以,令,则,∴在上单调递增,∴∴在上恒成立,∴在上单调递增.【小问3详解】解:原不等式等价于,令,,即证,∵,,由(2)知在上单调递增,∴,∴∴在上单调递增,又因为,∴,所以命题得证.19.答案:(1)的减区间为,增区间为.(2)(ⅰ)见解析;(ⅱ)见解析.解析:(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ),,则题设不等式可转化为,结合零点满足的方程进一步转化为,利用导数可证该不等式成立.【小问1详解】,当,;当,,故的减区间为,的增区间为.【小问2详解】(ⅰ)因为过有三条不同的切线,设切点为,故,故方程有3个不同的根,该方程可整理为,设,则,当或时,;当时,,故在上为减函数,在上为增函数,因为有3个不同的零点,故且,故且,整理得到:且,此时,设,则,故为上的减函数,故,故.(ⅱ)当时,同(ⅰ)中讨论可得:故在上为减函数,在上为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论