版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘市永城陈集乡联合中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,.3sinA=sinB,则角C=
(
)
A.
B.
C.
D.参考答案:B略2.某实验员在培养皿中滴入了含有10个某种真菌的实验液,经1小时培养真菌数目繁殖为原来的2倍,经测量知该真菌的繁殖规律为,其中为常数,表示时间(单位:小时),表示真菌个数,经过8小时培养,真菌能达到的个数为(
)A.640
B.1280
C.2560
D.5120参考答案:C3.椭圆的离心率为(
).
.
.
.参考答案:C4.设则(
)A.都不大于
B.都不小于
C.至少有一个不大于
D.至少有一个不小于参考答案:C5.若实轴长为2的双曲线上恰有4个不同的点满足,其中,,则双曲线C的虚轴长的取值范围为(
)A. B. C. D.参考答案:C【分析】设点,由结合两点间的距离公式得出点的轨迹方程,将问题转化为双曲线与点的轨迹有个公共点,并将双曲线的方程与动点的轨迹方程联立,由得出的取值范围,可得出答案。【详解】依题意可得,设,则由,得,整理得.由得,依题意可知,解得,则双曲线C的虚轴长.6.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为(
)A.9
B.18
C.27
D.36参考答案:B略7.下列说法正确的是A.一个命题的逆命题为真,则它的否命题为假B.一个命题的逆命题为真,则它的逆否命题为真C.一个命题的逆否命题为真,则它的否命题为真D.一个命题的否命题为真,则它的逆命题为真参考答案:D
8.下图为某几何体的三视图,图中四边形为边长为1的正方形,两条虚线互相垂直,则该几何体体积为(
)A.
B.
C.
D.参考答案:D试题分析:由三视图可知,给定的几何体是一个正方体,挖去一个四棱锥所得的组合体,正方体的边长为,所以正方体的体积为,四棱柱的体积为,所以组合体的体积为,故选D.考点:几何体的三视图、体积的计算.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,得出给定的几何体是一个正方体,挖去一个四棱锥所得的组合体是解答的关键.9.用反证法证明命题“若自然数a,b,c的积为偶数,则a,b,c中至少有一个偶数”时,对结论正确的反设为(
)
A、a,b,c中至多有一个偶数
B、a,b,c都是奇数
C、a,b,c至多有一个奇数
D、a,b,c都是偶数参考答案:B
【考点】反证法与放缩法【解答】解:用反证法法证明数学命题时,应先假设要证的命题的反面成立,即要证的命题的否定成立,
而命题:“自然数a,b,c中至少有一个是偶数”的否定为:“a,b,c中一个偶数都没有”,
即a,b,c都是奇数,
故选:B.
【分析】用反证法法证明数学命题时,应先假设命题的反面成立,求出要证的命题的否定,即为所求.
10.已知是圆内一点,过点最长的弦所在的直线方程是A.
B.C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知f(x)是定义在R上奇函数,又f(2)=0,若x>0时,xf′(x)+f(x)>0,则不等式xf(x)>0的解集是.参考答案:(﹣∞,﹣2)∪(2,+∞)【考点】奇偶性与单调性的综合.【分析】由题意设g(x)=xf(x)并求出g′(x),由条件和导数与函数单调性的关系,判断出g(x)在(0,+∞)上的单调性,由f(x)是奇函数判断出g(x)是偶函数,根据条件、偶函数的性质、g(x)的单调性等价转化不等式xf(x)>0,即可求出不等式的解集.【解答】解:由题意设g(x)=xf(x),则g′(x)=xf′(x)+f(x),∵x>0时,xf′(x)+f(x)>0,∴g(x)在(0,+∞)上单调递增,∵f(x)是定义在R上奇函数,∴g(x)是定义在R上偶函数,又f(2)=0,则g(2)=2f(2)=0,∴不等式xf(x)>0为g(x)>0=g(2),等价于|x|>2,解得x<﹣2或x>2,∴不等式xf(x)>0的解集是(﹣∞,﹣2)∪(2,+∞),故答案为:(﹣∞,﹣2)∪(2,+∞).12.在平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,P为抛物线C上一点,且PF=5,则点P的横坐标是
.参考答案:4【考点】抛物线的简单性质.【分析】由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,已知|PF|=5,则P到准线的距离也为5,即x+1=5,将p的值代入,进而求出x.【解答】解:∵抛物线y2=4x=2px,∴p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|PF|=x+1=5,∴x=4,故答案为:413.当函数f(x)=取到极值时,实数x的值为
.参考答案:1【考点】利用导数研究函数的极值.【分析】求出函数的导数,解关于导函数的方程,求出x的值即可.【解答】解:f′(x)==,令f′(x)=0,解得:x=1,故答案为:1.14.直线被圆所截得的弦长等于______________.参考答案:略15.用“秦九韶算法”计算多项式,当x=2时的值的过程中,要经过
次乘法运算和
次加法运算。参考答案:5,516.参考答案:略17.若函数的图象在点(0,0)处的切线方程为_______.参考答案:【分析】求出导函数,根据导函数得切线斜率,即可求得切线方程.【详解】,,即函数的图象在点处的切线斜率为1,所以切线方程为:.故答案为:【点睛】此题考查导数的几何意义,根据导函数求函数在某点处的切线方程,关键在于准确求出导函数.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆的长轴长为6,焦距为,求椭圆的标准方程.参考答案:【考点】椭圆的标准方程.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】设椭圆的标准方程,由椭圆的长轴长为6,焦距为,分别求出a,b,c,由此能求出椭圆的标准方程.【解答】解:当焦点在x轴时,设椭圆方程为(a>b>0),∵椭圆的长轴长为6,焦距为,∴a=3,c=2,b2=9﹣8=1,∴椭圆方程为.当焦点在y轴时,设椭圆方程为=1,(a>b>0),∵椭圆的长轴长为6,焦距为,∴a=3,c=2,b2=9﹣8=1,∴椭圆方程为.故椭圆的标准方程为或.【点评】本题考查椭圆的标准方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用,易错点是容易忽视焦点在y轴上的椭圆方程.19.(9分)已知椭圆左、右焦点分别为F1、F2,点P(2,),点F2在线段PF1的中垂线上.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C交于M、N两点,直线F2M与F2N的斜率互为相反数求证:直线l过定点,并求该定点的坐标.参考答案:(Ⅰ)由椭圆C的离心率 得,其中, 椭圆C的左、右焦点分别为又点F2在线段PF1的中垂线上 解得
-------(4分)
(Ⅱ)由题意,知直线MN存在斜率,设其方程为由 消去设 则 且
----------(8分) 由已知, 得 化简,得
--------(10分) 整理得 直线MN的方程为, 因此直线MN过定点,该定点的坐标为(2,0)----(12分)20.已知复数,若z2+az+b=1﹣i,(1)求z;(2)求实数a,b的值.参考答案:【考点】A5:复数代数形式的乘除运算;A3:复数相等的充要条件.【分析】(1)(1﹣i)2=1﹣2i+i2=﹣2i,再由复数除法知识,分子分母同乘以2+i,化简整理即可.(2)把Z=1+i代入z2+az+b=1﹣i,整理成x+yi形式,由复数相等知识实部、虚部分别相等,列方程组求解.【解答】解:(1),(2)把Z=1+i代入z2+az+b=1﹣i,即(1+i)2+a(1+i)+b=1﹣i,得a+b+(2+a)i=1﹣i.所以解得a=﹣3;b=4所以实数a,b的值分别为﹣3,421.(本小题满分13分)是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?(提示:可先令n=1,2探求出a,b的值再证明)参考答案:解:若存在常数使等式成立,则将代入上式,有得,即有
对于一切成立………4分证明如下:(1)当时,左边=,右边=,所以等式成立
…………6分(2)假设时等式成立,即
当时,=====也就是说,当时,等式成立,
综上所述,可知等式对任何都成立。
…………13分22.甲、乙两位学生参加全国数学联赛培训.在培训期间,他们参加的5次测试成绩记录如下:甲:82
82
79
95
87乙:95
75
80
90
85(Ⅰ)从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;(Ⅱ)现要从甲、乙两位同学中选派一人参加正式比赛,从统计学的角度考虑,你认为选派哪位同学参加合适?并说明理由.参考答案:【考点】CC:列举法计算基本事件数及事件发生的概率.【分析】(Ⅰ)要从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率,首先要计算“要从甲、乙两人的成绩中各随机抽取一个”的事件个数,再计算“甲的成绩比乙高”的事件个数,代入古典概型公式即可求解.(Ⅱ)选派学生参加大型比赛,是要寻找成绩发挥比较稳定的优秀学生,所以要先分析两名学生的平均成绩,若平均成绩相等,再由茎叶图分析出成绩相比稳定的学生参加.【解答】解:(Ⅰ)记甲被抽到的成绩为x,乙被抽到成绩为y,用数对(x,y)表示基本事件:(82,95),(82,75),(82,80),(82,90),(82,85),(82,95),(82,75),(82,80),(82,90),(82,85),(79,95),(79,75),(79,80),(79,90),(79,85),(95,95),(95,75),(95,80),(95,90),(95,85),(87,95),(87,75),(87,80),(87,90),(87,85),基本事件总数n=25记“甲的成绩比乙高”为事件A,事件A包含的基本事件:(82,75),(82,80),(82,75),(82,80),(79,75),(95,75),(95,80),(95,90),(95,85),(87,75),(87,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版出租车行业车辆运营保险合同
- 2024年度智能交通管理系统开发合同
- 子宫样腺癌护理
- 动物健康管理
- 2024年度北京市房产项目设计合同
- 《数字电子技术基础》课件00数字电子技术绪论
- 专科护理的发展规划
- 电机能耗优化控制研究
- 外研版八年级英语下册Module5 Unit3 Language in use课件
- 《现代公关礼仪》课件第11章
- 热力管道阀门井施工方案
- 国家开放大学《理工英语3》章节测试参考答案
- 巴金名著导读《十年一梦》
- 银行应急预案演练方案总结报告
- 项目申报书(模板)(高校)
- 三只松鼠客户关系管理
- 起诉赠与合同无效民事起诉状合集3篇
- 2024年山东地区光明电力服务公司第二批招聘高频考题难、易错点模拟试题(共500题)附带答案详解
- 《预防踩踏》课件
- 人教版四年级上下册英语单词默写表(汉译英)
- 小学关工委制度范本
评论
0/150
提交评论