版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学(工本)年月真题
00023201810
1、【单选题】在空间直角坐标系中,点(6,-1,2)关于y轴的对称点的坐标是
A:
B:
C:
答D:案:D
解析:
点关于y轴对称的点为应选择D.
2、【单选题】
等于0
等于1
A:
等于1/3
B:
不存在
C:
答D:案:A
解析:
因为根据有界变量与无穷小量的乘积是无穷小量,原极限为0.应选择A.
3、【单选题】设积分区域D是由
及坐标轴所围第一象限区域,
二重积分化为极坐标下的二次
积分为
A:
B:
C:
答D:案:B
4、【单选题】以为特解的微
分方程是
A:
B:
C:
答D:案:C
解析:
将特解依次代入四个选项的方程中去.因故只有选项C的方程能够得到满足.
应选择C.
5、【单选题】幂级数的收敛
域是
A:
B:
C:
答D:案:B
解析:
因故该幂级数的收敛半径为r=3,收敛区间为(-3,3).当x=-3时,原级
数变为由莱布尼兹判别法可知该级数收敛.当x=3时,原级数变为
它是调和级数,发散。故原幂级数的收敛域为应选择B.
6、【问答题】已知向量则常
数a=_____________
答案:a=-6.
解析:
7、【问答题】
答案:
解析:
8、【问答题】
答案:2/3
解析:
9、【问答题】
答案:
解析:
10、【问答题】
答案:1/3
解析:
原级数
11、【问答题】已知直线L经过点
求直线L的方程。
答案:
解析:
12、【问答题】已知函数
答案:
解析:
由复合函数求导数的法则
13、【问答题】
答案:
解析:
切向量为参数t=1对应的曲线上的点为此时的切向量为
它也是法平面的法向量.由平面的点法式方程可得法平面为
即
14、【问答题】
答案:
解析:
梯度x轴的方向向量可取为.若使得x轴与梯度垂直,应有
点积,即
15、【问答题】
答案:
解析:
积分区域如图,由对称性可知.用极坐标计算
16、【问答题】计算三重积分
其中积分区域
答案:192
解析:
17、【问答题】
答案:
解析:
18、【问答题】计算对面积的曲面积分
在第一卦限中的部分。
答案:
解析:
19、【问答题】
答案:
解析:
20、【问答题】
答案:
解析:
21、【问答题】判断无穷级数
是否收敛,如果收敛,是绝对
收敛还是条件收敛?
答案:条件收敛.
解析:
22、【问答题】
答案:
解析:
23、【问答题】证明球面上
任意点处的法线过球心。
答案:
24、【问答题】验证在整个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度劳动合同范本(含工资待遇与福利制度)
- 2024年度环保设备研发与生产合作合同
- 2024年度租赁合同租赁期限及租赁物使用规定
- 2024年度光伏发电项目合作合同发电项目内容及合作模式
- 04版大数据分析与信息服务合同
- 2024年度网络安全与防范合同
- 2024年度电影特效技术保密合同2篇
- 2024年度智能制造工厂采购监控设备合同
- 疟疾防治课件
- 《家居市场细分》课件
- FX挑战题梯形图实例
- 热水供暖设计说明
- 体育特色学校建设方案
- 服装企业生产排期、进度计划表
- HXD3电力机车题库填空题
- 电厂固定资产目录(所有设备)
- 普通介绍信格式参考
- 产品合格证模板
- 天然基础基坑3M深土方开挖专项方案
- 直流屏出厂检验报告
- 外贸销售合同
评论
0/150
提交评论