版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市第十三中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.过双曲线的右焦点向其一条渐近线作垂线,垂足为与另一条渐近线交于点,若,则双曲线的离心率为(
)
A.2 B. C. D.参考答案:D略2.参数方程(θ为参数)化为普通方程是()A.2x﹣y+4=0 B.2x+y﹣4=0C.2x﹣y+4=0,x∈[2,3] D.2x+y﹣4=0,x∈[2,3]参考答案:D【考点】QH:参数方程化成普通方程.【分析】由于cos2θ=1﹣2sin2θ,由已知条件求出cos2θ和sin2θ代入化简可得结果.【解答】解:由条件可得
cos2θ=y+1=1﹣2sin2θ=1﹣2(x﹣2),化简可得2x+y﹣4=0,x∈[2,3],故选D.3.连接椭圆(a>b>0)的一个焦点和一个顶点得到的直线方程为x-2y+2=0,则该椭圆的离心率为()A.
B.
C.
D.参考答案:A略4.执行如图所示的程序框图,则输出s的值为()A.21 B.55 C.91 D.140参考答案:C【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的s,n的值,可得当n=7时不满足条件n<7,退出循环,输出s的值为91,从而得解.【解答】解:模拟程序的运行,可得n=1,s=0满足条件n<7,执行循环体,s=1,n=2满足条件n<7,执行循环体,s=5,n=3满足条件n<7,执行循环体,s=14,n=4满足条件n<7,执行循环体,s=30,n=5满足条件n<7,执行循环体,s=55,n=6满足条件n<7,执行循环体,s=91,n=7不满足条件n<7,退出循环,输出s的值为91.故选:C.【点评】本题考查的知识点是循环结构,当循环次数不多时,多采用模拟循环的方法,本题属于基础题.5.在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L﹣距离”定义为|P1P2|=|x1﹣x2|+|y1﹣y2|.则平面内与x轴上两个不同的定点F1,F2的“L﹣距离”之和等于定值(大于|F1F2|)的点的轨迹可以是()A. B. C. D.参考答案:A【考点】轨迹方程.【分析】设出F1,F2的坐标,在设出动点M的坐标,由新定义列式后分类讨论去绝对值,然后结合选项得答案.【解答】解:设F1(﹣c,0),F2(c,0),再设动点M(x,y),动点到定点F1,F2的“L﹣距离”之和等于m(m>2c>0),由题意可得:|x+c|+|y|+|x﹣c|+|y|=m,即|x+c|+|x﹣c|+2|y|=m.当x<﹣c,y≥0时,方程化为2x﹣2y+m=0;当x<﹣c,y<0时,方程化为2x+2y+m=0;当﹣c≤x<c,y≥0时,方程化为y=;当﹣c≤x<c,y<0时,方程化为y=c﹣;当x≥c,y≥0时,方程化为2x+2y﹣m=0;当x≥c,y<0时,方程化为2x﹣2y﹣m=0.结合题目中给出的四个选项可知,选项A中的图象符合要求.故选:A.6.若双曲线经过点,且渐近线方程是,则双曲线的方程是(A)
(B)
(C)
(D)参考答案:D7.若椭圆的离心率为,则=(
)
A.3或3/16
B.3
C.3/16
D.-3参考答案:A8.双曲线的实轴长是虚轴长的2倍,则m等()A.
B.
C.
D.
参考答案:D略9.巳知F1,F2是椭圆(a>b>0)的两焦点,以线段F1F2为边作正三角形PF1F2,若边PF1的中点在椭圆上,则该椭圆的离心率是()A.﹣1 B.+1 C. D.参考答案:A【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设边PF1的中点为Q,连接F2Q,Rt△QF1F2中,算出|QF1|=c且|QF2|=c,根据椭圆的定义得2a=|QF1|+|QF2|=(1+)c,由此不难算出该椭圆的离心率.【解答】解:由题意,设边PF1的中点为Q,连接F2Q在△QF1F2中,∠QF1F2=60°,∠QF2F1=30°Rt△QF1F2中,|F1F2|=2c(椭圆的焦距),∴|QF1|=|F1F2|=c,|QF2|=|F1F2|=c根据椭圆的定义,得2a=|QF1|+|QF2|=(1+)c∴椭圆的离心率为e===﹣1故选:A【点评】本题给出椭圆与以焦距为边的正三角形交于边的中点,求该椭圆的离心率,着重考查了解三角形、椭圆的标准方程和简单性质等知识,属于中档题.10.复数(i是虚数单位)的虚部是()A. B. C.3 D.1参考答案:B【考点】A5:复数代数形式的乘除运算;A2:复数的基本概念.【分析】直接利用复数的除法运算法则进行化简成最简形式,再根据复数的虚部的概念得出答案即可.【解答】解:,其虚部为:.故选B.【点评】本题主要考查了复数的基本概念、利用复数的除法的运算法则化简复数.解题的关键是要牢记对于分式类型的复数的化简要分子分母同时乘以分母的共轭复数!二、填空题:本大题共7小题,每小题4分,共28分11.沿对角线AC将正方形ABCD折成直二面角后,AB与CD所在的直线所成的角等于
参考答案:60°12.已知椭圆的方程是,它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则△ABF2的周长为__________.参考答案:考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据椭圆方程得椭圆的焦点在x轴上,由焦距|F1F2|=8得c=4,结合b2=25算出.最后根据椭圆的定义,即可算出△ABF2的周长.解答:解:∵椭圆的方程是(a>5),∴椭圆的焦点在x轴上,∵焦距|F1F2|=8=2c,得c=4∴a2=b2+c2=25+42,可得.∵|AB|=|AF1|+|BF1|,由椭圆的定义,得|AF1|+|AF2|=|BF1|+|BF2|=2a=2∴△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=.故答案为:点评:本题给出椭圆的方程,求椭圆经过焦点的弦与右焦点构成的三角形的周长.着重考查了椭圆的定义、标准方程与简单几何性质等知识,属于基础题13.若函数的定义域为R,则实数的取值范围是
.参考答案:(e2,+∞)14.已知圆的圆心在直线上,则
;圆被直线截得的弦长为____________.参考答案:2;815.若复数z满足|z|=1(i为虚数单位),则|z﹣2i|的最小值是.参考答案:1【考点】复数求模.【分析】复数z满足|z|=1(i为虚数单位),设z=cosθ+isinθ,θ∈[0,2π).利用复数模的计算公式与三角函数求值即可得出.【解答】解:∵复数z满足|z|=1(i为虚数单位),设z=cosθ+isinθ,θ∈[0,2π).则|z﹣2i|=|cosθ+i(sinθ﹣2)|==≥1,当且仅当sinθ=1时取等号.故答案为:1.【点评】本题考查了复数的运算法则、模的计算公式及其三角函数求值,考查了推理能力与计算能力,属于基础题.16.已知A,B,P是双曲线上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积,则该双曲线的离心率为___________.
参考答案:2根据双曲线的对称性可知A、B关于原点对称,设,则,,所以,故答案是2.
17.如图,半径是的⊙中,是直径,是过点的⊙的切线,相交于点,且,,又,则线段的长为
.参考答案:6三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知f(x)=2ax-+lnx在x=-1,x=处取得极值.(1)求a、b的值;(2)若对x∈[,4]时,f(x)>c恒成立,求c的取值范围.参考答案:解:(1)∵f(x)=2ax-+lnx,
∴f′(x)=2a++.∵f(x)在x=-1与x=处取得极值,∴f′(-1)=0,f′()=0,即解得
∴所求a、b的值分别为1、-1.(2)由(1)得f′(x)=2-+=
(2x2+x-1)=(2x-1)(x+1).∴当x∈[,]时,f′(x)<0;当x∈[,4]时,f′(x)>0.∴f()是f(x)在[,4]上的极小值.又∵只有一个极小值,∴f(x)min=f()=3-ln2.∵f(x)>c恒成立,∴c<f(x)min=3-ln2.∴c的取值范围为c<3-ln2.19.已知函数f(x)=x3+ax2+bx+c在点x0处取得极小值-5,其导函数y=f′(x)的图象经过点(0,0),(2,0).(1)求a,b的值;(2)求x0及函数f(x)的表达式.
参考答案:略20.(本题13分)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的部分频率分布直方图,观察图形的信息,回答下列问题.(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.参考答案:(1)设第i组的频率为fi(i=1,2,3,4,5,6),因为这六组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.频率分布直方图如图所示.(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的及格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.21.如图,已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,左准线l1:x=﹣和右准线l2:x=分别与x轴相交于A、B两点,且F1、F2恰好为线段AB的三等分点.(1)求椭圆C的离心率;(2)过点D(﹣,0)作直线l与椭圆相交于P、Q两点,且满足=2,当△OPQ的面积最大时(O为坐标原点),求椭圆C的标准方程.参考答案:【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)通过焦点F2(c,0),右准线l2:,得到a,c关系,然后求解离心率.(2)由(1)知,求出b2=2c2,设椭圆方程为2x2+3y2=6c2.设直线l的方程为,联立方程组,利用判别式以及韦达定理,求解三角形的面积,利用基本不等式求解面积的最大值,然后求解椭圆方程.【解答】解:(1)焦点F2(c,0),右准线l2:,由题知|AB|=3|F1F2|,即,即a2=3c2,解得.(2)由(1)知,得a2=3c2,b2=2c2,可设椭圆方程为2x2+3y2=6c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动物外套产业链招商引资的调研报告
- 人工智能与机器学习行业市场调研分析报告
- 登山杖项目运营指导方案
- 电话听筒产品供应链分析
- 头发拉直制剂产品供应链分析
- 婴儿床床单产业链招商引资的调研报告
- 信息和数据的临时电子存储行业相关项目经营管理报告
- 纺车产品供应链分析
- 电动吸痰器商业机会挖掘与战略布局策略研究报告
- 应收账款融资行业市场调研分析报告
- 15《我与地坛》教学设计2023-2024学年统编版高中语文必修上册
- DL∕T 1687-2017 六氟化硫高压断路器状态评价导则
- 小学三年级周长应用题100道附答案(完整版)
- 2024年家庭期刊集团有限公司招聘笔试冲刺题(带答案解析)
- 数字教育资源质量评估指标体系建构
- 保密及知识产权归属协议范本(2024版)
- 南京2024年江苏南京市审计局所属事业单位招聘人员笔试历年典型考题及考点附答案解析
- (2020版)煤矿安全生产标准化管理体系评分表
- 现场翻译合同范本
- 技术买断合同范本
- 网络安全与舆情应对培训课件
评论
0/150
提交评论