湖南省株洲市火田中学高二数学理月考试题含解析_第1页
湖南省株洲市火田中学高二数学理月考试题含解析_第2页
湖南省株洲市火田中学高二数学理月考试题含解析_第3页
湖南省株洲市火田中学高二数学理月考试题含解析_第4页
湖南省株洲市火田中学高二数学理月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省株洲市火田中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若正项数列{an}满足a1=2,an+12﹣3an+1an﹣4an2=0,则{an}的通项an=(

)A.an=22n﹣1 B.an=2n C.an=22n+1 D.an=22n﹣3参考答案:A【考点】数列递推式.【专题】计算题.【分析】先考虑an+12﹣3an+1an﹣4an2=0分解转化,能得出(an+1﹣4an)(an+1+an)=0,继而,数列{an}是等比数列,由等比数列的通项公式解得.【解答】解:由an+12﹣3an+1an﹣4an2=0得((an+1﹣4an)(an+1+an)=0{an}是正项数列∴an+1﹣4an=0,,由等比数列定义,数列{an}是以2为首项,以4为公比的等比数列.由等比数列的通项公式得,an=2×4n﹣1=22n﹣1.故选A.【点评】本题首先将给出的递推公式进行分解转化,数列{an}的属性豁然而出.解决不再是难事.2.下列命题中正确的是()A.若p:?x∈R,x2+x+1<0,则¬p:?x∈R,x2+x+1<0B.若p∨q为真命题,则p∧q也为真命题C.“函数f(x)为奇函数”是“f(0)=0”的充分不必要条件D.命题“若x2﹣3x+2=0,则x=1”的否命题为真命题参考答案:D【考点】四种命题.【分析】根据特称命题的否定是全称命题来判断A是否正确;根据复合命题真值表判断B的正确性;利用函数是否在0上有定义来判断C是否正确;写出命题的否命题,判断真假,可得D是正确的.【解答】解:对A选项,¬P为:?x∈R,x2+x+1≥0,故A错误;对B选项,若p∨q为真命题,则命题p、q至少一个为真命题;而p∧q为真命题,则命题p、q都为真命题,故B错误;对C选项,∵奇函数f(x)的定义域不包括0,则f(0)=0不成立,∴不满足充分性,故C错误;对D选项,∵命题“若x2﹣3x+2=0,则x=1”的否命题是:“若x2﹣3x+2≠0,则x≠1”,又x2﹣3x+2≠0?x≠1且x≠2,故D正确.故选:D.3.一条直线的倾斜角的正弦值为,则此直线的斜率是A.

B.

C.

D.参考答案:D4.下列各数中最小的一个是

A.

B.

C.

D.参考答案:B5.将两枚质地均匀的骰子各掷一次,设事件A={两个点数都不相同},B={至少出现一个3点},则

)A.

B.

C.

D.参考答案:A略6.已知直线互相平行,则的值是(

)A.

B.

C.或

D.或参考答案:A7.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300 B.216 C.180 D.162参考答案:C【考点】D8:排列、组合的实际应用.【分析】本题是一个分类计数原理,从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数;取0此时2和4只能取一个,0不可能排在首位,组成没有重复数字的四位数的个数为C32C21[A44﹣A33],根据加法原理得到结果.【解答】解:由题意知,本题是一个分类计数原理,第一类:从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为C32A44=72第二类:取0,此时2和4只能取一个,0不能排在首位,组成没有重复数字的四位数的个数为C32C21[A44﹣A33]=108∴组成没有重复数字的四位数的个数为108+72=180故选C.8.已知集合,,则A∩B=(

)A.{-1,0,1} B.{-1,0} C.{0,1} D.{-1,1}参考答案:B【分析】先求集合,然后求.【详解】因为,所以,选B.【点睛】本题考查了集合的交集.9.设直线关于原点对称的直线为,若与椭圆的交点为A、B,点为椭圆上的动点,则使的面积为的点的个数为(

)A.1

B.2

C.3

D.4参考答案:B10.已知实数x,y满足条件,则z=x+3y的最小值是(

) A. B. C.12 D.-12参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.将函数f(x)=sin(2x+)的图象向右平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是

.参考答案:利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的奇偶性,求得m的最小正值.解:将函数f(x)=sin(2x+)的图象向右平移m个单位(m>0),可得y=sin[2(x﹣m)+]=sin(2x﹣2m+),若所得图象对应的函数为偶函数,则﹣2m+=kπ+,k∈Z,即m=﹣﹣,则m的最小正值为,故答案为:.12.命题“若a,b都是奇数,则a+b是偶数”的否命题是.参考答案:若a,b不都是奇数,则a+b不是偶数【考点】四种命题.【分析】欲写出它的否命题,须同时对条件和结论同时进行否定即可.【解答】解:条件和结论同时进行否定,则否命题为:若a,b不都是奇数,则a+b不是偶数.故答案为:若a,b不都是奇数,则a+b不是偶数13.若行列式中第一行第二列元素的代数余子式的值为4,则a=

.参考答案:2【考点】二阶行列式的定义.【分析】本题直接根据行列式的代数余子式的定义进行计算,即可得到本题结论.【解答】解:∵行列式中第一行第二列元素的代数余子式的值为4,∴﹣=4,∴﹣(a﹣3a)=4,∴a=2.故答案为:2.14.

.参考答案:略15.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.参考答案:【考点】椭圆的简单性质.【专题】压轴题;数形结合.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.【点评】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.16.正四面体ABCD的棱长为1,其中线段平面,E,F分别是线段AD和BC的中点,当正四面体绕以AB为轴旋转时,线段EF在平面上的射影长的范围是

参考答案:[,].略17.在正方体ABCD-A1B1C1D1各个表面的对角线中,与AD1所成角为的有

▲条(填数字).参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.椭圆C:+=1(a>b>0).(1)若椭圆C过点(﹣3,0)和(2,).①求椭圆C的方程;②若过椭圆C的下顶点D点作两条互相垂直的直线分别与椭圆C相交于点P,M,求证:直线PM经过一定点;(2)若椭圆C过点(1,2),求椭圆C的中心到右准线的距离的最小值.参考答案:【考点】椭圆的简单性质.【专题】证明题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)①由椭圆过两点,利用待定系数法能求出椭圆C的方程.②由题意得PD、MD的斜率存在且不为0,设直线PD的斜率为k,则PD:y=kx﹣1,与椭圆方程联立求出P点坐标,用﹣代k,得M点坐标,由此能求出直线PM,从而能证明直线PM经过定点T(0,).(2)椭圆C的中心到右准线的距离d=,由此利用换元法及基本不等式性质能求出椭圆C的中心到右准线的距离的最小值.【解答】解:(1)①∵椭圆C:+=1(a>b>0)过点(﹣3,0)和(2,),∴,解得a=3,b=1,∴椭圆C的方程为.证明:②由题意得PD、MD的斜率存在且不为0,设直线PD的斜率为k,则PD:y=kx﹣1,由,得P(,),用﹣代k,得M(,),∴=,∴直线PM:y﹣=,即y=,∴直线PM经过定点T(0,).解:(2)椭圆C的中心到右准线的距离d=,由=1,得,∴==,令t=a2﹣5,t>0,则=t++9≥2+9=4+9,当且仅当t=2,时,等号成立,∴椭圆C的中心到右准线的距离的最小值为.【点评】本题考查椭圆方程的求法,考查直线过定点的证明,考查椭圆中心到右准线的距离的最小值的求法,是中档题,解题时要认真审题,注意椭圆性质、均值定理的合理运用.19.如图所示,已知椭圆+=1(a>b>0)的右焦点为F2(1,0),点A(1,)在椭圆上.(1)求椭圆方程;(2)点M(x0,y0)在圆x2+y2=b2上,点M在第一象限,过点M作圆x2+y2=b2的切线交椭圆于P、Q两点,问||+||+||是否为定值?如果是,求出该定值;如果不是,说明理由.参考答案:【考点】直线与圆锥曲线的综合问题.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】(I)由已知中椭圆=1(a>b>0)的右焦点为F2(1,0),可得c值,点H(1,)在椭圆上,可得a值,进而求出b值后,可得椭圆方程;(II)设P(x1,y1),Q(x2,y2),分别求出|F2P|,|F2Q|,结合相切的条件可得|PM|2=|OP|2﹣|OM|2求出|PQ|,可得结论.【解答】解:(1)∵右焦点为F2(1,0),∴c=1∴左焦点为F1(1,0),点H(1,)在椭圆上,∴2a=|HF1|+|HF2|=4,∴a=2,∴b==∴椭圆方程为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)设P(x1,y1),Q(x2,y2),(|x1|≤2)∴|PF2|2=(x1﹣1)2+y12=(x1﹣4)2,∴|PF2|=2﹣x1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣连接OM,OP,由相切条件知:|PM|2=|OP|2﹣|OM|2=x12+y12﹣3=x12,∴|PM|=x1,∴|PF2|+|PM|=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣同理可求|QF2|+|QM|=2∴|F2P|+|F2Q|+|PQ|=4为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)【点评】本题考查的知识点是椭圆的标准方程,直线与圆的位置关系,直线与椭圆的位置关系,熟练掌握椭圆的性质是解答本题的关键.20.传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此资料你是否有95﹪的把握认为选手成绩“优秀”与文化程度有关?

优秀合格合计大学组

中学组

合计

注:,其中.0.100.050.0052.70638417.879

(2)若江西参赛选手共80人,用频率估计概率,试估计其中优秀等级的选手人数;参考答案:(1)没有95﹪的把握认为优秀与文化程度有关;(2)60人【分析】(1)根据条形图即可完成2×2列联表,把数据代入公式计算出,与临界值比较,即可得到结论;(2)根据条形图计算出所抽取的100人中的优秀率,即可得到80人中优秀等级的选手人数。【详解】(1)由条形图可知2×2列联表如下

优秀合格合计大学组451055中学组301545合计7525100

没有95﹪的把握认为优秀与文化程度有关.(2)由条形图知,所抽取的100人中,优秀等级有75人,故优秀率为.所有参赛选手中优秀等级人数约为人.【点睛】本题考查独立性检验的运用,考查概率的计算,考查学生读图能力,属于基础题。21.为了了解九年级学生中女生的身高(单位:cm)情况.某中学对九年级女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:(1)求出表中m,n,M,N所表示的数分别是多少?(2)画出频率分布直方图;(3)全体女生中身高在哪组范围内的人数最多?估计九年级学生中女生的身高在161.5以上的概率?

参考答案:略22.某大学志愿者协会中,数学学院志愿者有8人,其中含5名男生,3名女生;外语学院志愿者有4人,其中含1名男生,3名女生.现采用分层抽样的方法(层内采用简单随机抽样)从两个学院中共抽取3名同学,到希望小学进行支教活动.(1)求从数学学院抽取的同学中至少有1名女同学的概率;(2)记ξ为抽取的3名同学中男同学的人数,求随机变量ξ的分布列和数学期望.参考答案:【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)由已知得理科组抽取2人,文科组抽取1人,从理科组抽取的同学中至少有1名女同学的情况有:一男一女、两女,由此能求出从数学学院抽取的同学中至少有1名女同学的概率.(2)由题意可知ξ的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量ξ的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论