![湖南省长沙市龙山县皇仓中学高二数学理下学期期末试卷含解析_第1页](http://file4.renrendoc.com/view11/M01/1B/32/wKhkGWX6zKGAV20wAAGBKvxH49Y240.jpg)
![湖南省长沙市龙山县皇仓中学高二数学理下学期期末试卷含解析_第2页](http://file4.renrendoc.com/view11/M01/1B/32/wKhkGWX6zKGAV20wAAGBKvxH49Y2402.jpg)
![湖南省长沙市龙山县皇仓中学高二数学理下学期期末试卷含解析_第3页](http://file4.renrendoc.com/view11/M01/1B/32/wKhkGWX6zKGAV20wAAGBKvxH49Y2403.jpg)
![湖南省长沙市龙山县皇仓中学高二数学理下学期期末试卷含解析_第4页](http://file4.renrendoc.com/view11/M01/1B/32/wKhkGWX6zKGAV20wAAGBKvxH49Y2404.jpg)
![湖南省长沙市龙山县皇仓中学高二数学理下学期期末试卷含解析_第5页](http://file4.renrendoc.com/view11/M01/1B/32/wKhkGWX6zKGAV20wAAGBKvxH49Y2405.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市龙山县皇仓中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m?α,则l⊥α B.若l⊥α,l∥m,则m⊥αC.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m参考答案:B【考点】直线与平面平行的判定.【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m?α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B2.已知,且,若恒成立,则实数的取值范是(
)A.
B.
C.
D.
参考答案:A3.设函数的定义域为M,值域为N,那么 (
)A.M={x|x≠0},N={y|y≠0}B.M={x|x<0且x≠-1,或x>0,N=y|y<0,或0<y<1,或y>1C.M={x|x≠0},N={y|y∈R}D.M={x|x<-1,或-1<x<0,或x>0=,N={y|y≠0}参考答案:B4.已知,,,则a,b,c的大小关系为()A. B.C. D.参考答案:C【分析】根据的单调性判断的大小关系,由判断出三者的大小关系.【详解】由,,,则.故选C.【点睛】本小题主要考查对数运算,考查对数函数的单调性,考查对数式比较大小,属于基础题.5.过平面区域内一点作圆的两条切线,切点分别为,记,则当最小时的值为(
)A
B.
C.
D.参考答案:C
6.已知,若,则=(
)A.0.2
B.0.3 C.0.7
D.0.8参考答案:D略7.设x∈R,i是虚数单位,则“x=﹣3”是“复数z=(x2+2x﹣3)+(x﹣1)i为纯虚数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】复数的基本概念;必要条件、充分条件与充要条件的判断.【分析】由x=﹣3能得到复数z=(x2+2x﹣3)+(x﹣1)i为纯数,反之,复数z=(x2+2x﹣3)+(x﹣1)i为纯数得到x=﹣3,则答案可求.【解答】解:由x=﹣3,得x2+2x﹣3=(﹣3)2+2×(﹣3)﹣3=0,x﹣1=﹣3﹣1=﹣4.而由,得x=﹣3.所以“x=﹣3”是“复数z=(x2+2x﹣3)+(x﹣1)i为纯数”的充要条件.故选C.8.已知集合,集合,则(
)A.
B.
C.
D.参考答案:C9.某运动某项目参赛领导小组要从甲、乙、丙、丁、戊五名志愿者中选派4人从事翻译、导游、
礼仪、司机四项不同工作,若甲、乙只能从事前三项工作,其余三人均能从事这四项工作,则不同的选派方案共有A、18种
B、36种
C、48种
D、72种参考答案:D10.已知是实数,则“且”是“且”的(
)A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,AC=1,BC=,以AB为边作等腰直角三角形ABD(B为直角顶点,C,D两点在直线AB的两侧),当∠C变化时,线段CD长的最大值为
.参考答案:3【考点】与二面角有关的立体几何综合题.【专题】计算题;转化思想;综合法;空间角.【分析】设∠ABC=α,AB=BD=a,由余弦定理,得CD2=2+a2+2sinα,cosα=,由此能求出当∠C变化时,线段CD长的最大值.【解答】解:设∠ABC=α,AB=BD=a,在△BCD中,由余弦定理,得CD2=BD2+BC2﹣2BD?BC?cos(90°+α)=2+a2+2sinα,在△ABC中,由余弦定理,得cosα=,∴sinα=,∴CD2=,令t=2+a2,则CD2=t+=t+≤+5=9,当(t﹣5)2=4时等号成立.∴当∠C变化时,线段CD长的最大值为3.故答案为:3.【点评】本题考查线段长的最大值的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.12.一个平面图形的水平放置的斜二测直观图是一个等腰梯形,直观图的底角为45°,两腰和上底边长均为1,则这个平面图形的面积为.参考答案:2+【考点】平面图形的直观图.【专题】空间位置关系与距离.【分析】根据斜二测化法规则画出原平面图形,可知水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.【解答】解:水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为1+,S=(1++1)×2=2+.故答案为:2+.【点评】本题考查水平放置的平面图形的直观图斜二测画法,由已知斜二测直观图根据斜二测化法规则,正确画出原平面图形是解题的关键.13.已知函数的导函数为偶函数,则
.参考答案:0略14.设抛物线,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为,则p的值为
.参考答案:抛物线的普通方程为,,,又,则,由抛物线的定义得,所以,则,由得,即,所以,,所以,解得.
15.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为
.
参考答案:3616.已知集合,则集合的真子集共有
个.参考答案:7试题分析:集合含有3个元素,则子集个数为,真子集有7个考点:集合的子集17.为激发学生学习兴趣,老师上课时在黑板上写出三个集合:,,;然后请甲、乙、丙三位同学到讲台上,并将“”中的数告诉了他们,要求他们各用一句话来描述,以便同学们能确定该数,以下是甲、乙、丙三位同学的描述,甲:此数为小于6的正整数;乙:A是B成立的充分不必要条件;丙:A是C成立的必要不充分条件.若三位同学说的都对,则“”中的数为.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)表1:施用新化肥小麦产量频数分布表小麦产量频数103540105
表2:不施用新化肥小麦产量频数分布表小麦产量频数1550305(1)完成下面频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
小麦产量小于20kg小麦产量不小于20kg合计施用新化肥
不施用新化肥
合计
附:0.0500.0100.0050.0013.8416.6357.87910.828参考答案:4分
(2)施用化肥的一小块土地小麦平均产量为5×0.1+15×0.35+25×0.4+35×0.1+45×0.05=21.5
………6分不施用新化肥的一小块土地小麦平均产量为5×0.15+15×0.5+25×0.3+35×0.05=17.5
………8分(3)表3
小麦产量小于20kg小麦产量不小于20kg合计施用新化肥100不施用新化肥100合计11090
………11分由于,所以有99.5%的把握认为施用新化肥和不施用新化肥的小麦产量有差异
………12分19.(本小题满分12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用右侧茎叶图表示这两组数据:(1)A、B二人预赛成绩的中位数分别是多少?(2)现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;(3)若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.参考答案:(1)A的中位数是(83+85)/2=84,B的中位数是:(84+82)/2=83……2分(2)派B参加比较合适.理由如下:==85,==85,………………4分S2B=[(78-85)2+(79-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=35.5S2A=[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41………6分∵=,S2B<S2A,∴B的成绩较稳定,派B参加比较合适.…………7分(3)任派两个(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10种情况;A、B两人都不参加(C,D),(C,E),(D,E)有3种.…10分至少有一个参加的对立事件是两个都不参加,所以P=1-=.……………12分20.如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).(1)求证:平面EFG∥平面PAB;(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;(3)求三棱锥C﹣EFG的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面平行的判定;直线与平面垂直的判定.【分析】(1)证明EF∥AB.利用直线与平面平行的判定定理证明EF∥平面PAB.然后利用平面与平面平行的判定定理证明平面EFG∥平面PAB.(2)连接DE,EQ,证明PD⊥AD,AD⊥PC.推出DE⊥PC,利用直线与平面垂直的判定定理证明PC⊥平面ADQ.(3)利用等体积VC﹣EFG=VG﹣CEF,转化求解即可.【解答】解:(1)证明:∵E、F分别是PC,PD的中点,∴EF∥CD又CD∥AB.∴EF∥AB.∵EF?平面PAB,AB?平面PAB,∴EF∥平面PAB.同理,EG∥平面PAB,∵EF∩EG=E,EF?平面EFG,EG?平面EFG∴平面EFG∥平面PAB.
…(2)解:连接DE,EQ,∵E、Q分别是PC、PB的中点,∴EQ∥BC,又BC∥AD.∴EQ∥AD∵平面PDC⊥平面ABCD,PD⊥DC,∴PD⊥平面ABCD.∴PD⊥AD,又AD⊥DC,PD∩DC=D∴AD⊥平面PDC,∴AD⊥PC.在△PDC中,PD=CD,E是PC的中点,∴DE⊥PC,∵DE∩AD=D∴PC⊥平面ADEQ,即PC⊥平面ADQ.
…(3)VC﹣EFG=VG﹣CEF=S△CEF?GC=×(×1×1)×1=.…21.(14分)在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?参考答案:40cm
,16000cm3解法一:设箱底边长为xcm,则箱高cm,得箱子容积
.
令
=0,解得
x=0(舍去),x=40,并求得V(40)=16000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16000是最大值答:当x=40cm时,箱子容积最大,最大容积是16000cm3解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积.(后面同解法一,略)由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处22.(本小题满分14分)某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元). (1) 分别将A、B两种产品的利润表示为投资的函数关系式; (2) 已知该企业已筹集到18万元资金,并将全部投入A、B两种产品的生产.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳房疾病课件
- 内科学第四章 胃炎课件
- 9.3《声声慢(寻寻觅觅)》课件 【知识精研】统编版高一语文必修上册
- 《多彩的消费》课件
- 《牛肉基本知识》课件
- 2025至2031年中国方圆实色五色电子打火机行业投资前景及策略咨询研究报告
- 电子科学与技术专业介绍课件
- 2025至2031年中国充电式紫外线消毒器行业投资前景及策略咨询研究报告
- 2025至2030年中国高频扬声器数据监测研究报告
- 2025至2030年中国防潮型地板基材数据监测研究报告
- PHOTOSHOP教案 学习资料
- 初中数学教学“教-学-评”一体化研究
- 2012年安徽高考理综试卷及答案-文档
- 《游戏界面设计专题实践》课件-知识点5:图标绘制准备与绘制步骤
- 自动扶梯安装过程记录
- 智慧供热管理系统方案可行性研究报告
- 帕金森病的言语康复治疗
- 中国城市居民的健康意识和生活方式调研分析报告
- 上海星巴克员工手册
- 统编版小学语文五年级下册第四单元解读与大单元设计思路
- 猫狗创业计划书
评论
0/150
提交评论