山东省东营市中外合作胜利新西兰学校高二数学理下学期摸底试题含解析_第1页
山东省东营市中外合作胜利新西兰学校高二数学理下学期摸底试题含解析_第2页
山东省东营市中外合作胜利新西兰学校高二数学理下学期摸底试题含解析_第3页
山东省东营市中外合作胜利新西兰学校高二数学理下学期摸底试题含解析_第4页
山东省东营市中外合作胜利新西兰学校高二数学理下学期摸底试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省东营市中外合作胜利新西兰学校高二数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3 B.2 C. D.参考答案:B【考点】圆锥曲线的共同特征.【专题】圆锥曲线的定义、性质与方程.【分析】根据M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分,可得椭圆的长轴长是双曲线实轴长的2倍,利用双曲线与椭圆有公共焦点,即可求得双曲线与椭圆的离心率的比值.【解答】解:∵M,N是双曲线的两顶点,M,O,N将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍∵双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故选B.【点评】本题考查椭圆、双曲线的几何性质,解题的关键是确定椭圆的长轴长是双曲线实轴长的2倍.2.在极坐标系中的点化为直角坐标是(

)A. B. C. D.参考答案:D【分析】根据,,可将点化为直角坐标.【详解】由题意得:,则,点化为直角坐标是:本题正确选项:【点睛】本题考查极坐标与直角坐标的互化,考查学生的计算能力,属于基础题.3.若命题P:?x∈R,cosx≤1,则()A.¬P:?x0∈R,cosx0>1 B.¬P:?x∈R,cosx>1C.¬P:?x0∈R,cosx0≥1 D.¬P:?x∈R,cosx≥1参考答案:A【考点】全称命题;命题的否定.【分析】通过全称命题的否定是特称命题,直接写出命题的否定即可.【解答】解:因为全称命题的否定是特称命题,所以命题P:?x∈R,cosx≤1,则¬P:?x0∈R,cosx0>1.故选A.4.若椭圆的离心率为,则实数m等于(

A、或

B、

C、

D、或参考答案:A略5.不等式的解集是(

)A.

B.C.

D.参考答案:A略6.若直线与直线互相垂直,则a的值为(A)

(B)

(C)

(D)1参考答案:C7.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于

(

)

A.

B.

C.

D.参考答案:C8.

某程序框图如图所示,若输出的S=57,则判断框内位置应该是(

A.k>4?

B.k>5?

C.k>6?

D.k>7?

参考答案:A略9.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为()A.②①③

B.③①②

C.①②③

D.②③①参考答案:D10.“所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数.”上述推理是()A.正确的B.大前提错

C.小前提错D.结论错参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.由曲线,直线所围图形面积S=

参考答案:略12.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是.参考答案:194【考点】归纳推理.【分析】注意数字排列的规律,每行的行号数和这一行的数字的个数相同,奇数行的数字从左向右依次减小,偶数行的数字从左向右依次增大,每行中相邻的数字为连续正整数,求出第20行最左边的一个数即可求出所求.【解答】解:由题意可知:每行的行号数和这一行的数字的个数相同,奇数行的数字从左向右依次减小,偶数行的数字从左向右依次增大,故前n﹣1行共有:1+2+…+(n﹣1)=个整数,故第n行的第一个数为:+1,第20行的数字从左向右依次增大,可求出第20行最左边的一个数是191,第20行从左至右的第4个数字应是194.故答案为:194.13.已知直线3x+4y-3=0与直线6x+my+11=0平行,则实数m的值是______.参考答案:814.已知P是直线上的动点,PA,PB是圆的切线,A,B是切点,C是圆心,那么四边形PACB的面积的最小值是___________.参考答案:15.在同一平面直角坐标系中,直线x﹣2y=2变成直线2x′﹣y′=4的伸缩变换是

.参考答案:【考点】O7:伸缩变换.【分析】将直线x﹣2y=2变成直线2x′﹣y′=4即直线x′﹣y′=2,横坐标不变,纵坐标变为原来的4倍,故有是.【解答】解:直线2x′﹣y′=4即直线x′﹣y′=2.将直线x﹣2y=2变成直线2x′﹣y′=4即直线x′﹣y′=2,故变换时横坐标不变,纵坐标变为原来的4倍,即有伸缩变换是.故答案为:.16.的展开式中的常数项为

参考答案:1217.曲线在点(-1,2)处的切线方程为

.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.

写出用二分法求方程x3-x-1=0在区间[1,1.5]上的一个解的算法(误差不超过0.001),并画出相应的程序框图及程序.参考答案:用二分法求方程的近似值一般取区间[a,b]具有以下特征:f(a)<0,f(b)>0.由于f(1)=13-1-1=-1<0,f(1.5)=1.53-1.5-1=0.875>0,所以取[1,1.5]中点=1.25研究,以下同求x2-2=0的根的方法.相应的程序框图是:程序:a=1b=1.5c=0.001DOx=(a+b)2f(a)=a∧3-a-1f(x)=x∧3-x-1IF

f(x)=0

THENPRINT

“x=”;xELSEIF

f(a)*f(x)<0

THENb=xELSEa=xEND

IFEND

IFLOOP

UNTIL

ABS(a-b)<=cPRINT

“方程的一个近似解x=”;xEND【答案】19.(本小题14分)已知ΔABC与ΔDBC都是边长为2的等边三角形,且平面ABC⊥平面DBC,过点作平面,且.(1)求证:∥平面;(2)求直线与平面所成角的大小.参考答案:20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC1)求角C大小;(2)求sinA﹣cos(B+)的最大值,并求取得最大值时角A,B的大小.参考答案:【考点】正弦定理的应用;三角函数的最值.【分析】(1)利用正弦定理化简csinA=acosC.求出tanC=1,得到C=.(2)B=﹣A,化简sinA﹣cos(B+),通过0<A<,推出<A+<,求出2sin(A+)取得最大值2.得到A,B.【解答】解:(1)由正弦定理得

sinCsinA=sinAcosC,因为0<A<π,所以sinA>0.从而sinC=cosC,又cosC≠0,所以tanC=1,C=.(2)有(1)知,B=﹣A,于是sinA﹣cos(B+)=sinA+cosA=2sin(A+).因为0<A<,所以<A+<,从而当A+=,即A=时2sin(A+)取得最大值2.综上所述sinA﹣cos(B+)的最大值为2,此时A=,B=.21.已知函数f(x)=(m∈Z)为偶函数,且f(3)<f(5).(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[f(x)﹣2x](a>0且a≠1),求g(x)在(2,3]上值域.参考答案:【考点】4Y:幂函数的单调性、奇偶性及其应用.【分析】(1)根据题意,结合幂函数的性质,求出m的取值范围,验证得出符合题意的m值即可;(2)求出g(x)的解析式,讨论a>1和0<a<1时,求出函数g(x)的值域.【解答】解:(1)因为f(3)<f(5),所以由幂函数的性质得,﹣2m2+m+3>0,解得﹣1<m<,又因为m∈Z,所以m=0或m=1,当m=0时,f(x)=m3不是偶函数;当m=1时,f(x)=x2是偶函数,所以m=1,f(x)=x2;(2)由(1)知g(x)=loga(x2﹣2x),设t=x2﹣2x,x∈(2,3],则t∈(0,3],此时g(x)在(2,3]上的值域,就是函数y=logat,t∈(0,3]的值域;当a>1时,y=logat在区间(0,3]上是增函数,所以y∈(﹣∞,loga3];当0<a<1时,y=logat在区间(0,3]上是减函数,所以y∈[loga3,+∞);所以当a>1时,函数g(x)的值域为(﹣∞,loga3],当0<a<1时,g(x)的值域为[loga3,+∞).22.(本题14分)如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).(1)若点Q是线段PB的中点,求证:PC⊥平面ADQ;(2)求二面角G-EF-D的余弦值.(3)若K为的重心,H在线段EG上,KH∥平面PDC,求出H到面PAC的距离

参考答案:[解析](1)解:连接DE,EQ,∵E、Q分别是PC、PB的中点,∴EQ∥BC∥AD.∵平面PDC⊥平面ABCD,PD⊥DC,∴PD⊥平面ABCD.∴PD⊥AD,又AD⊥DC,∴AD⊥平面PDC,∴AD⊥PC.在△PDC中,PD=CD,E是PC的中点,∴DE⊥PC,∴PC⊥平面ADEQ,即PC⊥平面ADQ.。。。。。。。。。。4分

(2)作AD中点M,连FM,GM,

即为二面角G-EF-D的平面角,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论