版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市总路咀中学2022-2023学年高二数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数满足对任意的,,若数列{an}是公差不为0的等差数列,且,则{an}的前40项的和为(
)A.80 B.60 C.40 D.20参考答案:B2.复数与复数相等,则实数a的值为
(
)
A.1
B.1或-4
C.-4
D.0或-4参考答案:C略3.某班有的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数X~B,则E(-X)的值为()A. B.- C. D.-参考答案:D本题考查二项分布的含义和性质.若则,其中是常数;因为,所以故选D4.复数,则的共轭复数对应点在(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限
参考答案:B略5.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是()A.4 B.8 C.12 D.16参考答案:D【考点】EF:程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,i的值,当S=16,i=9时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16【解答】解:模拟执行程序框图,可得i=1S=0满足条件,S=1,i=3满足条件,S=4,i=5满足条件,S=9,i=7满足条件,S=16,i=9由题意,此时,不满足条件,退出循环,输出i的值为9,则判断框中的横线上可以填入的最大整数为:16,故选:D.6.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C. D.参考答案:C【考点】7C:简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.7.设函数.若f(x)为偶函数,则f(x)在处的切线方程为()A. B.C. D.参考答案:C【分析】由奇偶性求得,可得函数的解析式,求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程.【详解】因为函数为偶函数,所以,可得,可得,所以函数,可得,;曲线在点处的切线的斜率为,则曲线在点处的切线方程为:.即.故选C.【点睛】本题主要考查利用导数求曲线切线方程,属于中档题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.8.已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.?x∈R,f(x)≤f(x0) B.?x∈R,f(x)≥f(x0) C.?x∈R,f(x)≤f(x0) D.?x∈R,f(x)≥f(x0)参考答案:C【考点】四种命题的真假关系.【分析】由x0满足关于x的方程2ax+b=0得出x=x0是二次函数的对称轴,由a>0可知二次函数有最小值.【解答】解:∵x0满足关于x的方程2ax+b=0,∴∵a>0,∴函数f(x)在x=x0处取到最小值是等价于?x∈R,f(x)≥f(x0),所以命题C错误.答案:C.9.设x,y满足约束条件,
若目标函数(a>0,b>0)的最大值为12,则的最小值为(
)A.
B.
C.
D.4参考答案:A略10.已知数列{an}满足点在函数的图像上,且,则数列的前10项和为(
)A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.等差数列{an},{bn}的前n项和分别为Sn,Tn,且,则______.参考答案:【分析】根据等差数列的性质可得,结合题中条件,即可求出结果.【详解】因为等差数列,的前n项和分别为,,由等差数列的性质,可得,又,所以.故答案为【点睛】本题主要考查等差数列的性质,以及等差数列的前项和,熟记等差数列的性质与前项和公式,即可得出结果.12.已知两个点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“B型直线”,给出下列直线:①y=x+1;②;③y=2;④y=2x+1.其中为“B型直线”的是
.(填上所有正确结论的序号)参考答案:①③13.已知,则
.参考答案:380试题分析:因为,所以.考点:二项式定理.14.已知两曲线的参数方程分别为和,它们的交点坐标为___________________。参考答案:15.已知平面向量,,且,则实数的值为
.参考答案:16.在△ABC中,∠ACB=90°,AB=16,∠ABC=30°,SC⊥平面ABC,SC=8,M是AB边上一动点,则SM的最小值为__________
.参考答案:17.已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则的值为
。参考答案:5三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分12分)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。(1)求证:AB1⊥面A1BD;(2)求二面角A-A1D-B的余弦值;(3)求点C到平面A1BD的距离;参考答案:(1)见解析;(2);(3)(1)取中点,连结.为正三角形,.在正三棱柱中,平面平面,平面.取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.,,,.平面.………………4分(2)设平面的法向量为.,.,,令得为平面的一个法向量.由(Ⅰ)知平面,
为平面的法向量.,.二面角的余弦值为.………………9分(3)由(Ⅱ),为平面法向量,. 点到平面的距离.………………12分
19.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:
245683040506070
如果与之间具有线性相关关系.(1)作出这些数据的散点图;(2)求这些数据的线性回归方程;(3)预测当广告费支出为9百万元时的销售额.参考答案:解:(1)(2)=5,=50,=1390,=145,=7,=15,∴线性回归方程为y=7x+15.(3)当x=9时,y=78.即当广告费支出为9百万元时,销售额为78百万元.略20.已知函数。(1)当时,求f(x)的极值;(2)当时,求f(x)的单调区间。参考答案:(1)极小值为,无极大值;(2)见解析【分析】(1)当时,求得函数的导数,利用导数求得函数的单调性,即可求解函数的极值.(2)求得函数的导数=,分类讨论,即可求解函数的单调区间.【详解】(1)由题意,函数,当时,,则,令,解得,当时,,函数单调递减;当时,,函数单调递增;所以函数的极小值为,无极大值.(2)由函数,则==当时,减区间为;增区间为;当时,减区间;当时,减区间为;增区间为.【点睛】本题主要考查导数在函数中的综合应用,着重考查了逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性与,以及函数单调性,求解参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.21.(本小题12分)某种产品的广告费用支出与销售额之间有如下的对应数据:
245683040506070
(1)求对的回归直线方程;
(2)据此估计广告费用为10销售收入的值。参考答案:解:(1),,…2分
,……………4分∴,,……………7分∴回归直线方程为。……………8分(2)时,预报的值为。答:广告费用为10销售收入的值大约85。……………12分略22.如图几何体中,底面ABCD为正方形,PD⊥平面ABCD,,且.(1)求证:BE∥平面PDA;(2)求PA与平面PBD所成角的大小.参考答案:(1)见解析(2)【分析】(1)由,,结合面面平行判定定理可证得平面平面,根据面面平行性质证得结论;(2)连接交于点,连接,利用线面垂直的判定定理可证得平面,从而可知所求角为,在中利用正弦求得结果.【详解】(1)四边形为正方形
又平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44821.1-2024平流层飞艇通用技术要求第1部分:环境控制系统
- 2024年度文化产业项目投资与孵化合同3篇
- 04版房地产开发合同2篇
- 2024年度网络游戏开发与运营合同:某游戏公司与某运营商之间的合同
- 班会课件主题班会做有责任心的人
- 2024年度禽畜粪便处理服务合同2篇
- 世界地理复习课件全部
- 2024年度博物馆展览设计合同
- 2024年度电子商务培训服务合同
- 2024年度技术转让合同技术转让详细描述
- TSCQA 208-2021 砼肋混凝土叠合板应用技术规程
- 银行保险从业人员销售服务初级培训考试题库
- 智慧学校(智慧教育)智慧校园创建工作汇报-强管理、重应用、促提升
- 多路温度采集系统设计与实现
- 泥浆材料及处理剂大全
- 临床基因扩增检验操作规范
- PS+6000+综合自动化系统教学
- 《空气能占据空间吗》教学反思
- 标准化沟通在临床护理中的应用PPT幻灯片课件
- 苏教版四年级上册小学数学《简单的周期》课件(公开课)
- 生活垃圾分类(课件)小学生垃圾分类主题班会
评论
0/150
提交评论