广东省汕头市碧华学校高二数学理摸底试卷含解析_第1页
广东省汕头市碧华学校高二数学理摸底试卷含解析_第2页
广东省汕头市碧华学校高二数学理摸底试卷含解析_第3页
广东省汕头市碧华学校高二数学理摸底试卷含解析_第4页
广东省汕头市碧华学校高二数学理摸底试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕头市碧华学校高二数学理摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若圆与两坐标轴无公共点,那么实数的取值范围是

)A.

B.

C.

D.参考答案:B2.双曲线的渐近线是(

A.

B.

C.

D.

参考答案:C略3.设的展开式的各项系数和为,二项式系数和为,若,则展开式中的系数为

)A.

B.

C.

D.参考答案:B4.设F1、F2为椭圆的两个焦点,M为椭圆上一点,MF1⊥MF2,且|MF2|=|MO|(其中点O为椭圆的中心),则该椭圆的离心率为()A.﹣1 B.2﹣ C. D.参考答案:A【考点】椭圆的简单性质.【分析】由题意可知:△OMF2为等边三角形,∠OF2M=60°,|MF2|=c,丨MF1丨=c,丨MF1丨+|MF2|=2a=c+c=(+1)c,a=,由椭圆的离心率公式即可求得椭圆的离心率.【解答】解:由题意可知:MF1⊥MF2,则△F1MF2为直角三角形,由|MF2|=|MO|,O为F1F2中点,则丨OM丨=丨OF2丨,∴△OMF2为等边三角形,∠OF2M=60°∴|MF2|=c,∴丨MF1丨=c,由椭圆的定义可知:丨MF1丨+|MF2|=2a=c+c=(+1)c,a=,则该椭圆的离心率e===﹣1,该椭圆的离心率为﹣1,故选:A.5.若sinθcosθ<0,则角θ是(

) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第二或第四象限角参考答案:D考点:象限角、轴线角.专题:计算题.分析:直接利用三角函数的值的符号,判断θ所在象限即可.解答: 解:因为sinθcosθ<0,所以sinθ,cosθ异号,即或,所以θ第二或第四象限角.故选D.点评:本题考查三角函数值的符号,角所在象限的判断,基本知识的应用.6.(本小题12分)

已知函数其中(1)当时,求曲线处的切线的斜率;(2)当时,求函数的单调区间与极值.w参考答案:(I)解:(II)

w.w.w.k.s.5.u.c.o.m

以下分两种情况讨论。(1)>,则<.当变化时,的变化情况如下表:

+0—0+

↗极大值↘极小值↗

w.w.w.k.s.5.u.c.o.m

(2)<,则>,当变化时,的变化情况如下表:

+0—0+

↗极大值↘极小值↗

w.略7.命题“若p则q”的逆命题是()A.若q则p B.若¬p则¬q C.若¬q则¬p D.若p则¬q参考答案:A【考点】四种命题.【专题】简易逻辑.【分析】将原命题的条件与结论互换,可得逆命题,从而可得【解答】解:将原命题的条件与结论互换,可得逆命题,则命题“若p则q”的逆命题是若q则p.故选A.【点评】本题考查了命题与逆命题的相互关系的应用,属于基础题.8.一个物体的运动方程为其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是(

)A.米/秒

B.米/秒

C.米/秒

D.米/秒参考答案:A9.若点满足线性约束条件,则的最大值为(

A.1

B.2

C.3

D.4参考答案:D略10.以A(﹣1,1)、B(2,﹣1)、C(1,4)为顶点的三角形是()A.锐角三角形B.钝角三角形C.以A点为直角顶点的直角三角形D.以B点为直角顶点的直角三角形参考答案:C【考点】两点间距离公式的应用.【专题】计算题;转化思想;综合法;直线与圆.【分析】先分别求出|AB|、|AC|、|BC|的长,再由勾股定理进行判断.【解答】解:∵A(﹣1,1)、B(2,﹣1)、C(1,4),∴|AB|==,|AC|==,|BC|==,∴|AC|2+|AB|2=|BC|2,∴以A(﹣1,1)、B(2,﹣1)、C(1,4)为顶点的三角形是以A点为直角顶点的直角三角形.故选:C.【点评】本题考查三角形形状的判断,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.某班有50名学生,其中15人选修A课程,另外35人选修B课程,从该班中任选两名学生,他们选修不同课程的概率是__________.参考答案:【分析】先计算出总的方法数,然后在每类选科人中各选一人,利用分步计算原理计算得方法数,根据古典概型概率计算公式计算出所求概率.【详解】∵该班有50名学生则从班级中任选两名学生共有种不同的选法又∵15人选修课程,另外35人选修课程∴他们是选修不同课程的学生的情况有:故从班级中任选两名学生,他们是选修不同课程的学生的概率.【点睛】本小题主要考查古典概型的计算,考查分步乘法计数原理,属于基础题.12.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是____________参考答案:

0<k<113.设的倾斜角为绕上一点p沿逆时针方向旋转角得到,的纵截距为-2,绕p沿逆时针旋转角得直线:则的方程为

。参考答案:14.直线过点(—4,0)且与圆交于两点,如果,那么直线的方程为

参考答案:或

略15.抛物线焦点在轴正半轴上,且被截得的弦长为5,则抛物线的标准方程为________________.参考答案:略16.已知平面向量满足,且,则________参考答案:【分析】由已知可求,然后结合向量的数量积的性质|,代入即可求解.【详解】∵,∴,∵,,,则,故答案为.【点睛】本题主要考查了平面向量的数量积的运算性质的简单应用,属于基础试题.17.若,则

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.本题满分14分)某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.

表1:(甲流水线样本频数分布表)图1:(乙流水线样本频率分布直方图)(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.

(参考公式:,其中)参考答案:(1)甲流水线样本的频率分布直方图如下:

……6分(2)由表1知甲样本中合格品数为,由图1知乙样本中合格品数为,故甲样本合格品的频率为乙样本合格品的频率为,ks5u据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为从乙流水线任取1件产品,该产品恰好是合格品的概率为.

………………8分

甲流水线乙流水线

合计合格品303666不合格品10414合计404080(3)列联表如下:

…………12分∵=∴有90%的把握认为产品的包装质量与两条自动包装流水线的选择有关.

…………14分略19.如图,正方体ABCD﹣A1B1C1D1的棱长为1,E、F分别是BB1和CD的中点.(Ⅰ)求AE与A1F所成角的大小;(Ⅱ)求AE与平面ABCD所成角的正切值.参考答案:【考点】直线与平面所成的角;异面直线及其所成的角.【分析】(Ⅰ)建立坐标系,利用向量方法求AE与A1F所成角的大小;(Ⅱ)证明∠EAB就是AE与平面ABCD所成角,即可求AE与平面ABCD所成角的正切值.【解答】解:(Ⅰ)如图,建立坐标系A﹣xyz,则A(0,0,0),E(1,0,),A1(0,0,1),F(,1,0)=(1,0,),=(,1,﹣1)∴=0,所以AE与A1F所成角为90°﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)∵ABCD﹣A1B1C1D1是正方体,∴BB1⊥平面ABCD∴∠EAB就是AE与平面ABCD所成角,又E是BB1中点,在直角三角形EBA中,tan∠EAB=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.观察以下5个等式:﹣1=﹣1﹣1+3=2﹣1+3﹣5=﹣3﹣1+3﹣5+7=4﹣1+3﹣5+7﹣9=﹣5…照以上式子规律:(1)写出第6个等式,并猜想第n个等式;(n∈N*)(2)用数学归纳法证明上述所猜想的第n个等式成立.(n∈N*)参考答案:【考点】F1:归纳推理.【分析】(1)由已知中﹣1=﹣1,﹣1+3=2,﹣1+3﹣5=﹣3,﹣1+3﹣5+7=4,﹣1+3﹣5+7﹣9=﹣5,等式左边有n个连续奇数相加减,右边为n(n为偶数)或n的相反数(n为奇数),进而得到结论;(2)当n=1时,由已知得原式成立,假设当n=k时,原式成立,推理可得n=k+1时,原式也成立,①②知﹣1+3﹣5+7﹣9+…+(﹣1)n(2n﹣1)=(﹣1)nn成立.【解答】解:(1)由已知中:﹣1=﹣1﹣1+3=2﹣1+3﹣5=﹣3﹣1+3﹣5+7=4﹣1+3﹣5+7﹣9=﹣5…归纳可得:第6个等式为﹣1+3﹣5+7﹣9+11=6

…第n个等式为﹣1+3﹣5+7﹣9+…+(﹣1)n(2n﹣1)=(﹣1)nn…(2)下面用数学归纳法给予证明:﹣1+3﹣5+7﹣9+…+(﹣1)n(2n﹣1)=(﹣1)nn①当n=1时,由已知得原式成立;…②假设当n=k时,原式成立,即﹣1+3﹣5+7﹣9+…+(﹣1)k(2k﹣1)=(﹣1)kk…那么,当n=k+1时,﹣1+3﹣5+7﹣9+…+(﹣1)k(2k﹣1)+(﹣1)k+1(2k+1)=(﹣1)kk+(﹣1)k+1(2k+1)=(﹣1)k+1(﹣k+2k+1)=(﹣1)k+1(k+1)故n=k+1时,原式也成立,由①②知﹣1+3﹣5+7﹣9+…+(﹣1)n(2n﹣1)=(﹣1)nn成立.21.已知抛物线C的顶点为O(0,0),焦点F(0,1)(1)求抛物线C的方程;(2)过点F作直线交抛物线C于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论