




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广西钦州市浦北县九年级(上)期末数学试卷
一、选择题:本题共12小题,每小题3分,共36分。在每小题给出的选项中,只有一项是符合题目要求
的。
1.下列事件为必然事件的是()
A.打开电视机,正在播放新闻B.掷一枚质地均匀的硬币,正面朝上
C.买一张电影票,座位号是奇数号D.任意画一个三角形,其内角和是180。
2.下列函数中,是反比例函数的是()
AX
A.y.口5C.y=x2Dyf
3.一元二次方程2/-x+3=0的二次项系数和常数项分别是()
A.2,-1B.2,3C.-1,3D.-1
4.如图,△力BC与AdB'C'关于点。成中心对称,则下列结论不成立的是(
A.点a与点A是对称点
B.BO=B'O
C.AB=4B'
D.AACB=^C'A'B'
5.如图,04,OB是O。的半径,若乙4。8=50。,贝叱4C8的度数是()
A.25°
B.50°
C.75°
D.100°
6.如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次,当转盘停止转动
时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是
()
D-l
7.若m、九是一元二次方程%2+3%-9=0的两个根,则TH?+4m+ri的值是()
A.4B.5C.6D.12
8.一个矩形的长是宽的3倍,若宽增加3cm,它就变成正方形,则矩形面积是()
A27
A.-cm2B.9cm2C.—cm2D.27cm2
34
9.已知二次函数y=2(久一3)2+1,可知正确的是()
A.其图象的开口向下B.其图象的对称轴为直线式=-3
C.当x<3时,y随x的增大而增大D.其最小值为1
10.如图,。。的直径AB1弦CD于点E,连接BD.若CD=8,OE=3,则BD的长为
()
A.
B.2<3
C.717
D.275
D.
12.如图,正方形ABCD的四个顶点均在坐标轴上,4B=2.将正方形A8CD绕
点。顺时针旋转,每秒旋转60。,同时点P从4B的中点处出发,在正方形的
边上顺时针移动,每秒移动1个单位,则第2022秒时,点P的坐标为()
A.薛争
区(一苧,年)
。(一1",一下)
D.(苧,一苧)
二、填空题:本题共6小题,每小题3分,共18分。
13.点P(O,1)关于原点的对称点P'的坐标是.
14.若关于久的方程/+2久+机=0有两个不相等的实数根,则m的取值范围是.
15.在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外都相同,小明通过多次试验发现,摸
出白球的频率稳定在0.3左右,则袋子里白球可能是个.
16.已知点4(%1,%)与点8(%2/2)都在反比例函数y=|的图象上,且0<<%2,那么月___72(填
“>,,或"=,,或).
17.已知正三角形4BC的边心距为展CM,则正三角形的边长为cm.
18.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.
三、计算题:本大题共1小题,共6分。
19.解方程:X2+3X+2=0.
四、解答题:本题共7小题,共56分。解答应写出文字说明,证明过程或演算步骤。
20.(本小题8分)
如图,在边长为1的正方形网格中,AABC的顶点均在格点上.
(1)画出△4BC关于原点成中心对称的4A'B'C,并直接写出△各顶点的坐标.
(2)求点B旋转到点B'的路径长(结果保留兀).
21.(本小题8分)
将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上.
(1)若随机地抽取一张,则抽到数字恰好为1的概率是;
(2)请你通过列表或画树状图分析:先随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上
的数字,求组成的两位数能被4整除的概率.
22.(本小题8分)
果农田丰计划将种植的草莓以每千克15元的单价对外批发销售,由于部分果农盲目扩大种植,造成该草莓
滞销.为了加快销售,减少损失,田丰对价格进行两次下调后,以每千克9.6元的单价对外批发销售.
(1)如果每次价格下调的百分率相同,求田丰每次价格下调的百分率;
(2)小李准备到田丰处购买3吨该草莓,因数量多,田丰准备再给予两种优惠方案供选择:
方案一:打九折销售;
方案二:不打折,每吨优惠现金400元.试问小李选择哪种方案最优惠?请说明理由.
23.(本小题8分)
如图直线y=2久+b与双曲线y=为常数,kK0)在第一象限内交于点4(1,4),且与无轴、y轴分别交于
B、C两点.
①求直线和双曲线的解析式;
②若点P在久轴上,且ABCP的面积等于4,求点P的坐标.
24.(本小题8分)
如图,已知抛物线经过4(-1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)点M在线段BC上(不与B,C重合),过点M作“可〃)/轴交抛物线于点N,若点M的横坐标为小,请用含血
的代数式表示MN的长.
25.(本小题8分)
如图,。。的直径为4B,点C在。。上,点D,E分别在4B,AC的延长线上,DE1AE,垂足为E,CD与
O。相切于点C.
(1)求证:乙4=4CDE;
(2)若4B=4,BD=3,求CD的长.
26.(本小题8分)
问题:如图①,在RtAABC中,AB=AC,。为BC边上一点(不与点B,C重合),将线段4D绕点4逆时针
旋转90。得到4E,连接EC,则线段BC,DC,EC之间满足的等量关系式为
探索:如图②,在RtAABC与Rt△力DE中,ABAC,AD=AE,将△ADE绕点4旋转,使点。落在8c边
上,试探索线段4。,BD,CD之间满足的等量关系,并证明你的结论.
图⑵
答案和解析
1.【答案】D
【解析】解:4打开电视机,正在播放新闻,是随机事件,不符合题意;
8、掷一枚质地均匀的硬币,正面朝上,是随机事件,不符合题意;
C、买一张电影票,座位号是奇数号,是随机事件,不符合题意;
。、任意画一个三角形,其内角和是180。,是必然事件,符合题意;
故选:D.
根据事件发生的可能性大小判断即可.
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不
可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也
可能不发生的事件.
2.【答案】B
【解析】解:力、该函数属于正比例函数,故本选项错误;
2、该函数属于反比例函数,故本选项正确;
C、该函数属于二次函数,故本选项错误;
D、该函数是y与x-1成反比例函数关系,故本选项错误;
故选:B.
此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=:(k于0);
本题考查了反比例函数的定义.判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关
系,然后根据反比例函数的意义去判断,其形式为y=g(k为常数,kK0)或丫=kxT(k为常数,k力0).
3.【答案】B
【解析】解:一元二次方程2/一%+3=0的二次项系数和常数项分别是2,3.
故选:B.
根据一元二次方程的一般形式找出二次项系数和常数项即可.
此题考查了一元二次方程的一般形式,且一般形式为a/+bx+c=0(a,6,c为常数且a丰0).
4.【答案】D
【解析】解:・・・△ABC与△AB'C'关于点。成中心对称,
.••点4与点4是对称点,BO=B'O,AB=A'B',
A,B,C正确,
故选:D.
利用中心对称的性质一一判断即可.
本题考查中心对称,解题的关键是理解中心对称的性质,属于中考常考题型.
5.【答案】A
【解析】解:•••Z20B和N4CB者B对端,
11
•••乙1CB=★力。B=/50。=25°.
故选:力.
直接利用圆周角定理求解.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的
一半.
6.【答案】C
【解析】解:指针落在红色区域内的概率是息=9,
5o(JD
故选:C.
用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.
本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.
7.【答案】C
【解析】解:;m,九是一元二次方程/+3%-9=0的两个根,
•••m+n=3,mn=-9,
TH是久2+3%—9=0的一个根,
•••m2+3m—9=0,
・•・m2+3m=9,
•••m2+4m+n=m2+3m+m+n=9+(m+n)=9—3=6.
故选:C.
由于zn、九是一元二次方程%2+3%-9=o的两个根,根据根与系数的关系可得m+几=-3,mn=-9,
而m是方程的一个根,可得m2+3m—9=0,即m?+37n=9,那么zn?+47n+n=m2+3m+zn+几,
再把血2+3租、m+荏的值整体代入计算即可.
本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程a/+以+。=0缶。0)两根%1、'2之
间的关系:为1+牝=~,%2=
8.【答案】C
【解析】解:设矩形的宽为久cm,长为3%cm,
由题意得:%+3=3%,
解得%=|,
矩形的宽为|cg长为
・•・这个矩形面积为羡xI=^(cm2).
ZZ4
故选:C.
设矩形的宽为Xcm,长为3xcm,由题意得关于x的方程,解得x的值,再根据矩形的面积公式计算即可.
本题考查了一元一次方程的应用,根据题意正确列出方程并熟练掌握相关运算法则与公式是解题的关键.
9.【答案】D
【解析】解:4、••・二次函数y=2(x-3)2+1中,a=2>0,.,.其图象的开口向上,故本选项错误;
3、・••二次函数的解析式是y=2(%一3)2+1,.•.其图象的对称轴是直线x=3,故本选项错误;
C、・••二次函数的图象开口向上,对称轴是直线x=3,.•.当%<3时,y随x的增大而减小,故本选项错误;
•由函数解析式可知其顶点坐标为(3,1),.•.其最小值为1,故本选项正确.
故选:D.
根据二次函数的性质对各选项进行逐一判断即可.
本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.
••AB1CD,4B过圆心0,CD=8,
CE=DE=4,〃)ED=Z.DEB=90°,
•••OE=3,
OD=VO£2+DE2=V32+42=5,
OB=OD=5,
BE=。8—OE=5—3=2,
由勾股定理,得BD=yjBE2+DE2=V22+42=,加=2,亏,
故选:D.
连接。D,根据垂径定理求出DE,根据勾股定理求出。D,求出BE,再根据勾股定理求出BD即可.
本题考查了勾股定理和垂径定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.
1L【答案】A
【解析】【解答】
解:七<0<%,b=—1<0
•・•直线过二、三、四象限;双曲线位于一、三象限.
故选:A.
【分析】
本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
根据反比例函数的图象性质及一次函数的图象性质可作出判断.
12.【答案】C
【解析】解:根据题意可知:正方形旋转6次回到原位,P点经过8秒回到原位,
•••2022+6=337,2022+8=252...6,
此时正方形回到原位,点P走6个单位,
所以点P位于第三象限,在BC的中点处,
BC=AB=2.
OB=OC=yn.
故选:C.
根据题意可得正方形旋转6次回到原位,P点经过8秒回到原位,2022+6=337,20228=252...6,此
时正方形回到原位,点P走6个单位,所以点P位于第三象限,在的中点处,根据勾股定理和三角形中位
线定理即可解决问题.
本题考查了正方形的性质,坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.
13.【答案】(0,-1)
【解析】解:P(O,1)关于原点的对称点P'的坐标为(0,-1),
故答案为:(0,-1).
根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
本题考查了关于原点对称的点的坐标,利用了关于原点对称的点的横坐标互为相反数,纵坐标互为相反
数.
14.【答案】m<1
【解析】解:根据题意得/=22-4m>0,
解得m<1.
故答案为6<1.
利用判别式的意义得到/=22-4m〉0,然后解关于小的不等式即可.
本题考查了根的判别式:一元二次方程a/+。乂+c=0(aK0)的根与4=炉-4ac有如下关系:当4〉0
时,方程有两个不相等的实数根;当4=0时,方程有两个相等的实数根;当4<0时,方程无实数根.
15.【答案】9
【解析】解:由题意可得,
30x0.3=9(个),
即袋子中白球的个数最有可能是9个,
故答案为:9.
分析:
根据白球出现的频率和球的总数,可以计算出白球的个数.
本题考查利用频率估计概率,解答本题的关键是明确题意,计算出白球的个数.
16.【答案】>
【解析】解:•••反比例函数y=|中k=2>0,
・•・在同一个象限内,y随久的增大而减小,
•・•点与点B(久2必)都在反比例函数、=例图象上,且0〈久1<%
故答案为:>,
由反比例函数y=:可知,在同一个象限内,y随x的增大而减小即可得答案.
本题考查反比例函数的增减性,掌握k>0时,在同一个象限内,y随尤的增大而减小是解题的关键.
17.【答案】6
【解析】解:如图所示:连接80,
由题意可得,0D1BC,0D=<3cm,Z0BD=30°,
故8。=2DO=2<3(cm),
BD=VOB2-OD2=3,
BC=2BD=2x3=6,
故答案为:6.
直接利用正三角形的性质得出8。=2D。=然后利用勾股定理求得BD,从而求得边长.
此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.
18.【答案】y
【解析】解:以水平面所在的直线AB为x轴,以过拱顶C且垂直于4B的直线为y轴建立平面直角坐标系,。
为原点,
V/K
6n
由题意可得:/。=。8=3米,C坐标为(0,2),
通过以上条件可设顶点式y=a/+2,
把4点坐标(-3,0)代入抛物线解析式得,
9。+2=0,
解得:a=—
所以抛物线解析式为y=~1x2+2,
当x=4时,y=-|xl6+2=-y,
••冰面下降卷米,
故答案为:y.
根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可
得出答案.
此题主要考查了二次函数的应用,根据已知,建立坐标系从而得出二次函数解析式是解决问题的关键.
19.【答案】解:分解因式得:(x+l)Q+2)=0,
可得x+1=0或x+2=0,
解得:%i=-1,x2=-2.
【解析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来
求解.
此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.
各点坐标:4(4,0),B'(3,3),C'(l,3).
(2)由图可知:OB=V32+32=3,1,
••BB'=n-OB=3V_2TT.
【解析】(1)根据关于原点对称的点的坐标,可得答案;
(2)根据弧长公式,可得答案.
本题考查了旋转变换,利用关于原点对称的点的坐标是解题关键,又利用了弧长公式.
21.【答案】⑴];
(2)解:(解法一)画树状图得:
开始
由树状图可得,所有等可能的结果有6种,其中组成的两位数能被4整除的有2种,
P(能被4整除的两位数)=1=1;
o3
(解法二)列表法得:
第1次123
第2次
12131
21232
31323
由列表法可得,所有等可能的结果有6种,其中组成的两位数能被4整除的有2种,
P(能被4整除的两位数)=|=:
o3
【解析】解:⑴P(抽到数字恰好为1)=全
故答案为:
(2)见答案.
【分析】
(1)利用一般列举法计算即可;
(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率
即可.
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结
果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
22.【答案】解(1)设田丰每次价格下调的百分率为x.
由题意,得15(1-x)2=9.6.
解这个方程,得久1=0.2,久2=18
因为降价的百分率不可能大于1,所以也=1.8不符合题意,
符合题目要求的是久1=0,2=20%.
答:田丰每次价格下调的百分率是20%.
(2)小李选择方案一购买更优惠.
理由:方案一所需费用为:9.6X0.9X3000=25920(元),
方案二所需费用为:9.6x3000-400x3=27600(元).
•••25920<27600,
•••小李选择方案一购买更优惠.
【解析】(1)设出平均每次下调的百分率,根据从15元下调到9.6列出一元二次方程求解即可;
(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.
本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.
23.【答案】解:(1)把4(1,4)代入双曲线y=为常数,k丰0),可得k=1X4=4,
・••双曲线的解析式为y=%
把/(1,4)代入直线)7=2%+/),可得b=2,
・••直线的解析式为y=2%+2;
(2)设P点的坐标为(%,0),
在y=21+2中,令y=0,则X=—1;令X=0,则y=2,
••・8(-1,0),(7(0,2),
.・.BO=1,CO—2,
•・•△8CP的面积等于4,
11
^BPXCO=4,即泳一(一1)|x2=4,
解得x=3或一5,
P点的坐标为(3,0)或(一5,0).
【解析】(1)把4(1,4)代入双曲线以及直线y=x+6,分别可得k,b的值;
(2)先根据直线解析式得到B。=1,CO=2,再根据A8CP的面积等于4,即可得到P的坐标.
本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满
足两个函数解析式.
24.【答案】解:(1)设抛物线的解析式为y=a(x+1)(%-3),
将C(0,3)代入解析式得,a(0+1)(0-3)=3,
解得:a=-1.
二抛物线的解析式为y=—(X+1)(久-3)=-x2+2%+3.
(2)设线段BC的解析式为y=kx+b,
把点B(3,0),C(0,3)代入得,=°.
解得:*=
3=3
・・・线段BC的解析式为:y=-%+3,
•・,点M的横坐标为MN〃y轴,
••・M(m,—m+3),N(m,—m2+2m+3),
MN=-m2+2m+3—(—m+3)=—m2+3m(0<m<3).
【解析】(1)根据题意,设抛物线解析式为y=a。+1)(%-3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆文化艺术职业学院《建筑工程质量控制》2023-2024学年第二学期期末试卷
- 江西新能源科技职业学院《视频特技与非线性编辑》2023-2024学年第二学期期末试卷
- 中国石油大学(华东)《参展实务》2023-2024学年第二学期期末试卷
- 辽宁装备制造职业技术学院《单片机原理课程设计》2023-2024学年第二学期期末试卷
- 可克达拉职业技术学院《社会调查原理与方法》2023-2024学年第二学期期末试卷
- 潍坊环境工程职业学院《物联网通信技术》2023-2024学年第二学期期末试卷
- 湖南城市学院《MBA运营管理》2023-2024学年第二学期期末试卷
- 永城职业学院《音乐教学与技能训练》2023-2024学年第二学期期末试卷
- 第11课 有序的世界 教学设计 2024-2025学年四年级上册 浙教版(2023)信息科技
- 上海建桥学院《建筑安装设备与施工》2023-2024学年第二学期期末试卷
- 柴油发电机基础知识教案
- SHT 3005-2016 石油化工自动化仪表选型设计规范
- 2024年苏州卫生职业技术学院单招职业适应性测试题库及答案解析
- 阳光分级阅读 Letters for Mr James 课件
- 占道作业交通安全设施设置技术要求
- 《肝豆状核变性》课件
- 地铁施工管线保护培训课件
- 农村公路质量监督管理及措施
- 小学体积单位换算练习100道及答案
- 第7课《谁是最可爱的人》公开课一等奖创新教学设计-2
- 人音版四年级音乐下册全册教学设计教案表格式
评论
0/150
提交评论