湖北省浠水县实验中学2024届高三3月份第一次模拟考试数学试卷含解析_第1页
湖北省浠水县实验中学2024届高三3月份第一次模拟考试数学试卷含解析_第2页
湖北省浠水县实验中学2024届高三3月份第一次模拟考试数学试卷含解析_第3页
湖北省浠水县实验中学2024届高三3月份第一次模拟考试数学试卷含解析_第4页
湖北省浠水县实验中学2024届高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省浠水县实验中学2024届高三3月份第一次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前n项和为,若,则()A. B. C.7 D.22.已知点、.若点在函数的图象上,则使得的面积为的点的个数为()A. B. C. D.3.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或 B.2或 C.或 D.或4.设a,b都是不等于1的正数,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件5.已知m为实数,直线:,:,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-27.函数的图象的大致形状是()A. B. C. D.8.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.9.函数f(x)=lnA. B. C. D.10.已知函数,.若存在,使得成立,则的最大值为()A. B.C. D.11.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.12.为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为()A.正相关,相关系数的值为B.负相关,相关系数的值为C.负相关,相关系数的值为D.正相关,相关负数的值为二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,的夹角为30°,,则_________.14.已知实数满足则点构成的区域的面积为____,的最大值为_________15.设是等比数列的前项的和,成等差数列,则的值为_____.16.在中,角A,B,C的对边分别为a,b,c,且,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知平面与直线均垂直于所在平面,且.(1)求证:平面;(2)若,求与平面所成角的正弦值.18.(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.19.(12分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.20.(12分)椭圆:的离心率为,点为椭圆上的一点.(1)求椭圆的标准方程;(2)若斜率为的直线过点,且与椭圆交于两点,为椭圆的下顶点,求证:对于任意的实数,直线的斜率之积为定值.21.(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图.(1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.22.(10分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【详解】因为,所以,所以,所以,故选:B【点睛】本题主要考查等差数列的性质及前项和公式,属于基础题.2、C【解析】

设出点的坐标,以为底结合的面积计算出点到直线的距离,利用点到直线的距离公式可得出关于的方程,求出方程的解,即可得出结论.【详解】设点的坐标为,直线的方程为,即,设点到直线的距离为,则,解得,另一方面,由点到直线的距离公式得,整理得或,,解得或或.综上,满足条件的点共有三个.故选:C.【点睛】本题考查三角形面积的计算,涉及点到直线的距离公式的应用,考查运算求解能力,属于中等题.3、A【解析】

根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得:,得双曲线的一条渐近线的方程为∴焦点在x、y轴上两种情况讨论:

①当焦点在x轴上时有:②当焦点在y轴上时有:∴求得双曲线的离心率2或.

故选:A.【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.4、C【解析】

根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.【详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C.【点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.5、A【解析】

根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可.【详解】当m=1时,两直线方程分别为直线l1:x+y﹣1=0,l2:x+y﹣2=0满足l1∥l2,即充分性成立,当m=0时,两直线方程分别为y﹣1=0,和﹣2x﹣2=0,不满足条件.当m≠0时,则l1∥l2⇒,由得m2﹣3m+2=0得m=1或m=2,由得m≠2,则m=1,即“m=1”是“l1∥l2”的充要条件,故答案为:A【点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.6、A【解析】

求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.7、B【解析】

根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.【详解】函数易知为奇函数,故排除D.又,易知当时,;又当时,,故在上单调递增,所以,综上,时,,即单调递增.又为奇函数,所以在上单调递增,故排除A,C.故选:B【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.8、C【解析】

由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.9、C【解析】因为fx=lnx2-4x+4x-23=10、C【解析】

由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,,由于,则,同理可知,,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,,则,,则,构造函数,其中,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.11、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.12、C【解析】

根据正负相关的概念判断.【详解】由散点图知随着的增大而减小,因此是负相关.相关系数为负.故选:C.【点睛】本题考查变量的相关关系,考查正相关和负相关的区别.掌握正负相关的定义是解题基础.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

由求出,代入,进行数量积的运算即得.【详解】,存在实数,使得.不共线,.,,,的夹角为30°,.故答案为:1.【点睛】本题考查向量共线定理和平面向量数量积的运算,属于基础题.14、811【解析】

画出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.15、2【解析】

设等比数列的公比设为再根据成等差数列利用基本量法求解再根据等比数列各项间的关系求解即可.【详解】解:等比数列的公比设为成等差数列,可得若则显然不成立,故则,化为解得,则故答案为:.【点睛】本题主要考查了等比数列的基本量求解以及运用,属于中档题.16、【解析】

利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,,即.故答案为:.【点睛】本题考查利用正弦定理实现边角互化,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(Ⅰ)证明:过点作于点,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴点是的中点,连结,则∴平面∴∥,∴四边形是矩形设,得:,又∵,∴,从而,过作于点,则∴是与平面所成角∴,∴与平面所成角的正弦值为考点:面面垂直的性质定理;线面平行的判定定理;线面垂直的性质定理;直线与平面所成的角.点评:本题主要考查了线面平行的证明和直线与平面所成的角,属立体几何中的常考题型,较难.本题也可以用向量法来做:用向量法解题的关键是;首先正确的建立空间直角坐标系,正确求解平面的一个法向量.注意计算要仔细、认真.≌18、(1);(2)证明见解析【解析】

(1)利用零点分段法将表示为分段函数的形式,由此解不等式求得不等式的解集.(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:,由,解得,故.(2)证明:因为,所以,,所以,所以.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.19、(1)见解析;(2)【解析】

(1)取的中点,证明,则平面平面,则可证平面.(2)利用,是平面的高,容易求.,再求,则点到平面的距离可求.【详解】解:(1)如图:取的中点,连接、.在中,是的中点,是的中点,平面平面,故平面在直角梯形中,,且,∴四边形是平行四边形,,同理平面又,故平面平面,又平面平面.(2)是圆的直径,点是圆上异于、的一点,又∵平面平面,平面平面平面,可得是三棱锥的高线.在直角梯形中,.设到平面的距离为,则,即由已知得,由余弦定理易知:,则解得,即点到平面的距离为故答案为:.【点睛】考查线面平行的判定和利用等体积法求距离的方法,是中档题.20、(1);(2)证明见解析【解析】

(1)运用离心率公式和点满足椭圆方程,解得,,进而得到椭圆方程;(2)设直线,代入椭圆方程,运用韦达定理和直线的斜率公式,以及点在直线上满足直线方程,化简整理,即可得到定值.【详解】(1)因为,所以,①又椭圆过点,所以②由①②,解得所以椭圆的标准方程为.(2)证明设直线:,联立得,设,则易知故所以对于任意的,直线的斜率之积为定值.【点睛】本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查直线方程和椭圆方程联立,运用韦达定理和直线的斜率公式,化简整理,考查运算能力,属于中档题.21、(1),中位数为;(2)新能源汽车平均每个季度的销售量为万台,以此预计年的销售量约为万台.【解析】

(1)根据频率分布直方图中所有矩形面积之和为可计算出的值,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论