版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省咸宁市名校2023年数学九年级第一学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.太阳与地球之间的平均距离约为150000000km,用科学记数法表示这一数据为()A.1.5×108km B.15×107km C.0.15×109km D.1.5×109km2.下列事件中,必然发生的为()A.奈曼旗冬季比秋季的平均气温低 B.走到车站公共汽车正好开过来C.打开电视机正转播世锦赛实况 D.掷一枚均匀硬币正面一定朝上3.下列汽车标志中,既是轴对称图形又是中心对称图形的是A. B. C. D.4.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.5.设点和是反比例函数图象上的两个点,当<<时,<,则一次函数的图象不经过的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限6.下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A. B. C. D.17.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,8.下列一元二次方程中,没有实数根的是()A. B.C. D.9.关于的一元二次方程有一个根是﹣1,若二次函数的图象的顶点在第一象限,设,则的取值范围是()A. B. C. D.10.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5 B. C.2 D.11.涞水县某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到120吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. B.C. D.12.如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.70° B.45° C.35° D.30°二、填空题(每题4分,共24分)13.若点(p,2)与(﹣3,q)关于原点对称,则p+q=__.14.如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限.△ABO沿轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚10次后AB中点M经过的路径长为________15.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH=__里.16.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.17.如图,将绕着点顺时针旋转后得到,若,,则的度数是__________.18.如图所示,个边长为1的等边三角形,其中点,,,,…在同一条直线上,若记的面积为,的面积为,的面积为,…,的面积为,则______.三、解答题(共78分)19.(8分)若,且3a+2b﹣4c=9,求a+b﹣c的值是多少?20.(8分)如图,在一块长8、宽6的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.21.(8分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数的图象经过点P,求m的值.22.(10分)如图,在平面直角坐标系中,有一个,顶点的坐标分别是.将绕原点顺时针旋转90°得到,请在平面直角坐标系中作出,并写出的顶点坐标.23.(10分)如图所示,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形);(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.24.(10分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?25.(12分)阅读材料:以下是我们教科书中的一段内容,请仔细阅读,并解答有关问题.公元前3世纪,古希腊学家阿基米德发现:若杠杆上的两物体与支点的距离与其重量成反比,则杠杆平衡,后来人们把它归纳为“杠杆原理”,通俗地说,杠杆原理为:阻力×阻力臂=动力×动力臂(问题解决)若工人师傅欲用撬棍动一块大石头,已知阻力和阻力臂不变,分别为1500N和0.4m.(1)动力F(N)与动力臂l(m)有怎样的函数关系?当动力臂为1.5m时,撬动石头需要多大的力?(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少?(数学思考)(3)请用数学知识解释:我们使用棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.26.如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)(2)若AP=2,CD=8,求⊙O的半径.
参考答案一、选择题(每题4分,共48分)1、A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9-1=1.【详解】150000000km=1.5×101km.故选:A.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2、A【分析】根据必然事件的定义选出正确选项.【详解】解:A选项是必然事件;B选项是随机事件;C选项是随机事件;D选项是随机事件.故选:A.【点睛】本题考查必然事件和随机事件,解题的关键是掌握必然事件和随机事件的定义.3、D【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.4、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.5、A【解析】∵点和是反比例函数图象上的两个点,当<<1时,<,即y随x增大而增大,∴根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大.故k<1.∴根据一次函数图象与系数的关系:一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.因此,一次函数的,,故它的图象经过第二、三、四象限,不经过第一象限.故选A.6、C【分析】先判断出几个图形中的中心对称图形,再根据概率公式解答即可.【详解】解:由图形可得出:第1,2,3个图形都是中心对称图形,∴从中任意抽取一张,抽到的图案是中心对称图形的概率是:.故选:C.【点睛】此题主要考查了概率计算公式,熟练掌握中心对称图形的定义和概率的计算公式是解题的关键.7、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.8、A【解析】试题分析:A.∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B.∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C.∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D.∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.考点:根的判别式.9、D【分析】二次函数的图象过点,则,而,则,,二次函数的图象的顶点在第一象限,则,,即可求解.【详解】∵关于的一元二次方程有一个根是﹣1,∴二次函数的图象过点,∴,∴,,则,,∵二次函数的图象的顶点在第一象限,∴,,将,代入上式得:,解得:,,解得:或,故:,故选D.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用10、C【解析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【详解】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:C.【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.11、A【分析】根据2020年的产量=2018年的产量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:设该种植基地蔬菜产量的年平均增长率(百分数)为x,根据题意,得,故选A.【点睛】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2020年的产量的代数式,根据条件找准等量关系,列出方程.12、C【分析】先根据垂径定理得出=,再由圆周角定理即可得出结论.【详解】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题(每题4分,共24分)13、1【分析】直接利用关于原点对称点的性质得出p,q的值进而得出答案.【详解】解:∵点(p,2)与(﹣3,q)关于原点对称,∴p=3,q=﹣2,∴p+q=3﹣2=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握关于原点对称点的坐标之间的关系是解题关键.14、(4+)【分析】根据题意先作B3E⊥x轴于E,观察图象可知为三次一个循环,求点M的运动路径,进而分析求得翻滚10次后AB中点M经过的路径长.【详解】解:如图作B3E⊥x轴于E,可知OE=5,B3E=,观察图象可知为三次一个循环,一个循环点M的运动路径为:,则翻滚10次后AB中点M经过的路径长为:.故答案为:(4+).【点睛】本题考查规律题,解题的关键是灵活运用弧长公式、等边三角形的性质等知识解决问题.15、1.1【解析】∵EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得FH=1.1里.故答案为1.1.16、【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案为:.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.17、【分析】根据旋转的性质,得到,,利用三角形内角和定理,得到,即可得到答案.【详解】解:将绕着点顺时针旋转后得到,∴,,∴,∴.故答案为:20°.【点睛】本题考查了旋转的性质,三角形内角和定理,以及角的和差问题,解题的关键是熟练掌握旋转的性质,正确求出角的度数.18、【分析】由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上,可作出直线BB1.易求得△ABC1的面积,然后由相似三角形的性质,易求得S1的值,同理求得S2的值,继而求得Sn的值.【详解】如图连接BB1,B1B2,B2B3;由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上.∴S△ABC1=×1×=∵B
B1∥AC1,∴△BD1B1∽△AC1D1,△BB1C1为等边三角形则C1D1=BD1=;,△C1B1D1中C1D1边上的高也为;∴S1=××=;同理可得;则=,∴S2=××=;同理可得:;∴=,Sn=××=.【点睛】此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度较大,属于规律性题目,注意辅助线的作法,注意数形结合思想的应用.三、解答题(共78分)19、﹣1.【分析】设k,利用比例性质得到a=3k,b=5k,c=7k,所以9k+10k﹣28k=9,求出k后得到a、b、c的值,然后计算代数式的值.【详解】设k,则a=3k,b=5k,c=7k.∵3a+2b﹣4c=9,∴9k+10k﹣28k=9,解得:k=﹣1,∴a=﹣3,b=﹣5,c=﹣7,∴a+b﹣c=﹣3﹣5﹣(﹣7)=﹣1.【点睛】本题考查了比例的性质:灵活应用比例性质(内项之积等于外项之积、合比性质、分比性质、合分比性质、等比性质)进行计算.20、花圃四周绿地的宽为1m【分析】设花圃四周绿地的宽为x米,根据矩形花圃的面积=矩形绿地面积的一半列方程求解即可.【详解】解:设花圃四周绿地的宽为xm,由题意,得:(6-2x)(8-2x)=6×8,解方程得:x1=1,x2=6(舍),答:花圃四周绿地的宽为1m.【点睛】本题考查的知识点是一元二次方程的实际应用,根据题意找出题目中的等量关系式是解此题的关键.21、(1);(2).【分析】(1)已知A(2,0)an∠OAB==,可求得OB=1,所以B(0,1),设直线l的表达式为,用待定系数法即可求得直线l的表达式;(2)根据直线l上的点P位于y轴左侧,且到y轴的距离为1可得点P的横坐标为-1,代入一次函数的解析式求得点P的纵坐标,把点P的坐标代入反比例函数中,即可求得m的值.【详解】解:(1)∵A(2,0),∴OA=2∵tan∠OAB==∴OB=1∴B(0,1)设直线l的表达式为,则∴∴直线l的表达式为(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为-1又∵点P在直线l上,∴点P的纵坐标为:∴点P的坐标是∵反比例函数的图象经过点P,∴∴【点睛】本题考查待定系数法求函数的解析式;一次函数与反比例函数的交点坐标.22、作图见解析,【分析】连接OA、OB、OC,以O为圆心,分别以OA、OB、OC为半径,顺时针旋转90°,分别得到OA1、OB1、OC1,连接A1B1、A1C1、B1C1即可;然后过点A作AD⊥x轴于D,过点A1作A1E⊥x轴于E,利用AAS证出△OAD≌△A1OE,然后根据全等三角形的性质即可求出点A1的坐标,同理即可求出点B1、C1的坐标.【详解】解:连接OA、OB、OC,以O为圆心,分别以OA、OB、OC为半径,顺时针旋转90°,分别得到OA1、OB1、OC1,连接A1B1、A1C1、B1C1,如下图所示,即为所求;过点A作AD⊥x轴于D,过点A1作A1E⊥x轴于E∵根据旋转的性质可得:OA=A1O,∠AOA1=90°∴∠AOD+∠OAD=90°,∠AOD+∠A1OE=90°∴∠OAD=∠A1OE在△OAD和△A1OE中∴△OAD≌△A1OE∴AD=OE,OD=A1E∵点A的坐标为∴AD=OE=4,OD=A1E=2∴点A1的坐标为(4,2)同理可求点B1的坐标为(1,5),点C1的坐标为(1,1)【点睛】此题考查的是图形与坐标的变化:旋转和全等三角形的判定及性质,掌握旋转图形的画法和构造全等三角形是解决此题的关键.23、(1)△DFG或△DHF;(2).【分析】(1)、根据“同(等)底同(等)高的三角形面积相等”进行解答;(2)、画树状图求概率.【详解】(1)、的面积为:,只有△DFG或△DHF的面积也为6且不与△ABC全等,与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)、画树状图如图所示:由树状图可知共有6种等可能结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,所以所画三角形与△ABC面积相等的概率P=答:所画三角形与△ABC面积相等的概率为.【点睛】本题综合考查了三角形的面积和概率.24、销售单价为35元时,才能在半月内获得最大利润.【解析】本题考查了二次函数的应用.设销售单价为x元,销售利润为y元.求得方程,根据最值公式求得.解:设销售单价为x元,销售利润为y元.根据题意,得y=(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论