版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年江西省上饶市春晖中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在区间[0,2]上满足的x的取值范围是(
)A.
B.
C.
D.参考答案:B2.函数的图像大致为(
)A.
B.
C.
D.参考答案:D3.如果数列满足且,则数列的通项公式是A.
B.
C.
D.ks5u参考答案:D略4.双曲线5x2﹣ky2=5的一个焦点坐标是(2,0),那么k的值为()A.3 B.5 C. D.参考答案:D【考点】双曲线的简单性质.【分析】利用双曲线的方程求出a,b,c,通过双曲线的焦点坐标,求出实数k的值.【解答】解:因为双曲线方程5x2﹣ky2=5,即x2﹣=1,所以a=1,b2=,所以c2=1+,因为双曲线的一个焦点坐标(2,0),所以1+=4,所以k=.故选:D.【点评】本题考查双曲线的基本性质,焦点坐标的应用,考查计算能力.5.双曲线的焦点到渐近线的距离是(
)A.
B.
C.2
D.参考答案:A略6.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线:已知直线平面,直线平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为(
)A.大前提错误 B.小前提错误C.推理形式错误 D.非以上错误参考答案:A【分析】分析该演绎推理的三段论,即可得到错误的原因,得到答案.【详解】该演绎推理的大前提是:若直线平行与平面,则该直线平行平面内所有直线,小前提是:已知直线平面,直线平面,结论是:直线平面;该结论是错误的,因为大前提是错误的,正确叙述是“若直线平行于平面,过该直线作平面与已知平面相交,则交线与该直线平行”,、故选A.【点睛】本题主要考查了演绎推理的三段论退,同时考查了空间中直线与平面平行的判定与性质的应用,着重考查了推理与运算能力,属于基础题.7.我国古代数典籍《九章算术》》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.()A.3 B.4 C.5 D.6、参考答案:B【考点】等比数列的前n项和;等比数列的通项公式.【分析】利用等比数列的求和公式即可得出.【解答】解:由题意可知:大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前n天打洞之和为=2n﹣1,同理,小老鼠每天打洞的距离=2﹣,∴2n﹣1+2﹣=10,解得n∈(3,4),取n=4.即两鼠在第4天相逢.故选:B.【点评】本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.8.某人射击命中目标的概率为0.6,每次射击互不影响,连续射击3次,至少有2次命中目标的概率为
(
)A.
B.
C.
D.
参考答案:B9.函数可导,则等于(
)A
B
C
D
参考答案:C略10.水平放置的△ABC的直观图如图,其中B′O′=C′O′=1,A′O′=,那么原△ABC是一个()A.等边三角形B.直角三角形C.三边中只有两边相等的等腰三角形D.三边互不相等的三角形参考答案:A【考点】平面图形的直观图.【分析】由图形和A′O′=通过直观图的画法知在原图形中三角形的底边BC=B'C',AO⊥BC,且AO=,故三角形为正三角形.【解答】解:由图形知,在原△ABC中,AO⊥BC,∵A′O′=∴AO=∵B′O′=C′O′=1∴BC=2∴AB=AC=2∴△ABC为正三角形.故选A【点评】本题考查了平面图形的直观图的画法及其先关性质,把握好直观图与原图形的关系,是个基础题.二、填空题:本大题共7小题,每小题4分,共28分11.不等式的解集是_______________。参考答案:
解析:
12.若函数在区间()上既不是单调递增函数,也不是单调递减函数,则实数a的取值范围是________
参考答案:13.
。参考答案:12略14.当实数满足条件时,变量的取值范围是
.参考答案:(1,3)15.若复数是纯虚数,则实数的值是__________参考答案:0
16.若,则的值为*
*
.参考答案:1;略17.已知函数的最小值为3,则a=__________.参考答案:2【分析】根据导数可判断出函数的单调性,从而可知当时函数取最小值,代入得,从而求得结果.【详解】函数,,由得:或(舍去)当时,,单调递减;当时,,单调递增当时,取极小值,即最小值:的最小值为
,解得:本题正确结果:2【点睛】本题考查根据函数的最值求解参数的问题,关键是能够利用导数得到函数的单调性,从而根据单调性得到最值点.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知抛物线y2=2px(p>0)的焦点F与双曲线4x2﹣12y2=3的右焦点重合,A是抛物线上横坐标为4,且位于x轴上方的点,过A作AB垂直M于y轴,垂足为B.OB的中点为M(Ⅰ)求抛物线的标准方程;(Ⅱ)以点M为圆心,MB为半径作圆M.当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.参考答案:【考点】抛物线的简单性质.【分析】(Ⅰ)求出双曲线4x2﹣12y2=3的右焦点坐标,即可求抛物线的标准方程;(Ⅱ)求出圆心M(0,2)到直线AK的距离,即可讨论直线AK与圆M的位置关系.【解答】解:(Ⅰ)设双曲线4x2﹣12y2=3的右焦点坐标为F(c,0),由4x2﹣12y2=3得,∴.(2分)∴,即p=2,故抛物线的标准方程为y2=4x.(Ⅱ)∵点A的横坐标为4,且位于x轴上方的点,∴y=4∴点A的坐标是(4,4),由题意得B(0,4),M(0,2).∴圆M的圆心是点(0,2),半径为2.当m=4时,直线AK的方程为x=4,此时直线AK与圆M相离.(6分)当m≠4时,直线AK的方程为,即为4x﹣(4﹣m)y﹣4m=0.(7分)圆心M(0,2)到直线AK的距离为,(8分)令d>2,解得m>1.(9分)∴当m>1时,直线AK与圆M相离;((10分))当m=1时,直线AK与圆M相切;(11分)当m<1时,直线AK与圆M相交.(12分)【点评】本题考查双曲线、抛物线的方程与性质,考查直线与圆的位置关系,考查分类讨论的数学思想,属于中档题.19.如图,在四棱锥P-ABCD中,底面ABCD是菱形,,PD⊥平面ABCD,,点E,F分别为AB和PD中点.(1)求证:直线AF∥平面PEC;(2)求PC与平面PAB所成角的正弦值.参考答案:(1)见解析.(2).试题分析:(1)作交于根据条件可证得为平行四边形,从而根据线面平行的判定,即可得证;(2)建立空间直角坐标系,根据条件中的数据可求得平面平面PAB的一个法向量为,从而问题可等价转化为求与的夹角.试题解析:(1)作交于,∵点为中点,∴,∴,∴为平行四边形,∴,∵平面,平面,∴平面;(2)∵,∴,如图所示,建立坐标系,则,,,,,∴,,设平面的一个法向量为,∵,,∴,取,则,∴平面PAB的一个法向量为,∵,∴设向量与所成角为,∴,∴平面所成角的正弦值为.考点:1.线面平行的判定;2.空间向量求空间角.20.(10分)已知数列满足,;数列满足,(I)求数列和的通项公式(II)求数列的前项和参考答案:
(II)………(1)………(2).
(1)-(2)得..21.(12分)实数m取什么值时,复数z=(m2-5m+6)-3mi是(1)虚数?(2)纯虚数?(3)表示复数z的点在第二象限?参考答案:解:(1)当-3m≠0,即m≠0时,z是虚数;
2分(2)当即m=2或m=3时z是纯数;
5分(3)当,即不等式组无解,
5分所以点z不可能在第二象限。略22.(2016秋?温江区期末)从参加高二年级期中考试的学生中随机抽取60名学生,将其英语成绩分成六段[40,50),[50,60),…,[90,100)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)根据补充完整频率分布直方图估计出本次考试的平均分数、中位数;(小数点后保留一位有效数字)(3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?参考答案:【考点】频率分布直方图;分层抽样方法.【分析】(1)计算分数在[70,80)内的频率,利用求出小矩形的高,补出图形即可;(2)根据频率分布直方图,计算平均分与中位数即可;(3)根据分层抽样原理,计算各分数段内应抽取的人数即可.【解答】解:(1)分数在[70,80)内的频率为1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3.又=0.03,补出的图形如下图所示;(2)根据频率分布直方图,计算平均分为:=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71,估计这次考试的平均分是71;又0.01×10+0.015×10+0.015×10=0.4<0.5,0.4+0.03×10=0.7>0.5,∴中位数在[70,80)内,计算中位数为70+≈73.3;(3)根据分层抽样原理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度LED屏幕亮度调节与节能改造合同
- 2024年度知识产权保护合同:MLB棒球帽正品知识分享
- 2024年度物业服务合同标的及安全生产责任书
- 2024年多功能空调维修合作协议
- 2024装修合同该如何写范文
- 2024办公家具购买合同
- 2024年城市基础设施建设合同 with 工程质量与投资预算
- 2024年出版发行代理合同
- 【初中生物】脊椎动物(第2课时两栖动物和爬行动物) 2024-2025学年七年级生物上学期(人教版2024)
- 2024加工贸易合同
- 中医优势病种诊疗方案优化建议
- 第9课 发展社会主义民主政治(课件)-【中职专用】高一思想政治《中国特色社会主义》(高教版2023·基础模块)
- 医院院外会诊申请单、医师外出会诊审核表、医师外出会诊回执
- 茶叶公司安全生产管理制度
- MOOC 理论力学-长安大学 中国大学慕课答案
- 第7课+全球航路的开辟和欧洲早期殖民扩张+导学案-2023-2024学年中职高一下学期高教版(2023)世界历史全一册
- 个体诊所备案信息表
- 八年级语文期中考试成绩分析及教学反思(3篇)
- 电工操作证考试题库电工基础知识题库
- 养殖水环境化学全套教学课件
- 人教版六年级下册Unit 4 Then and now单元整体作业设计
评论
0/150
提交评论