版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖北省荆州市沙市第二中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设,,n∈N,则
(
)A.
B.-
C.
D.-
参考答案:A略2.某校要从1080名学生中抽取90人做问卷调查,采取系统抽样的方法抽取.将他们随机编号为1,2,3,…,1080,编号落入区间[1,330]的同学进行问卷Ⅰ的调查,编号落入区间[331,846]的
同学进行问卷Ⅱ的调查,编号落入区间[847,1080]的同学进行问卷Ⅲ的调查.若分组后在第一组采用简单随机抽样的方法抽到5号,则进行问卷Ⅲ的同学人数为()A.19
B.20
C.21
D.22参考答案:A3.若满足,满足,函数,则关于的方程的解的个数是(
)A. B. C. D.参考答案:C略4.已知抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,则p的值为()A.2 B.1 C. D.参考答案:A【考点】抛物线的简单性质.【分析】求得圆心及半径,由题意可知:抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,丨4+丨=5,解得:p=2.【解答】解:圆x2+y2﹣8x﹣9=0转化为(x﹣4)2+y2=25,圆心(4,0),半径为5,抛物线y2=2px(p>0)的准线为x=﹣,∵抛物线y2=2px(p>0)的准线与曲线x2+y2﹣8x﹣9=0相切,∴丨4+丨=5,解得:p=2,∴p的值为2,故选A.5..已知f(n)=++++…+,则()A.f(n)中共有n项,当n=2时,f(2)=+B.f(n)中共有n+1项,当n=2时,f(2)=1+++C.f(n)中共有n2-n+2项,当n=2时,f(2)=1+++D.f(n)中共有n2-n+1项,当n=2时,f(2)=1+++参考答案:C略6.双曲线x2-y2=1右支上一点P(a,b)到直线y=x的距离为,则a+b的值是(▲)
A.-
B.
C.-或
D.2或参考答案:B略7.“a+b=2”是“直线x+y=0与圆(x﹣a)2+(y﹣b)2=2相切”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线与圆相切的充要条件,可得“直线x+y=0与圆(x﹣a)2+(y﹣b)2=2相切”的等价命题“a+b=±2”,进而根据充要条件的定义,可得答案.【解答】解:若直线x+y=0与圆(x﹣a)2+(y﹣b)2=2相切则圆心(a,b)到直线x+y=0的距离等于半径即=,即|a+b|=2即a+b=±2故“a+b=2”是“直线x+y=0与圆(x﹣a)2+(y﹣b)2=2相切”的充分不必要条件故选A8.设集合I={1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有(
)A.50种
B.49种
C.48种
D.47种参考答案:B略9.命题,则命题的否定是(
)A.
B.
C.
D.参考答案:A10.
参考答案:解析:对于A:e=,a=b,渐近线y=±x互相垂直,真命题.对于B:设所求直线斜率为k,则k=-2,由点斜式得方程为2x+y-3=0,也为真命题.对于C:焦点F(,0),准线x=-
,
d=1真命题.对于D:a=5,b=3,c=4,d=2·
假命题,选D.二、填空题:本大题共7小题,每小题4分,共28分11.设变量满足约束条件则的最大值为________参考答案:412.已知集合,则=
.参考答案:13.奇函数f(x)定义域为(﹣π,0)∪(0,π),其导函数为f′(x).当0<x<π时,有f′(x)sinx﹣f(x)cosx<0,则关于x的不等式f(x)<f()sinx的解集是.参考答案:【考点】6A:函数的单调性与导数的关系.【分析】令g(x)=,x∈(﹣π,0)∪(0,π),g′(x)=<0,0<x<π.可得函数g(x)在(0,π)上单调递减.奇函数f(x)定义域为(﹣π,0)∪(0,π),因此函数g(x)为偶函数.x∈(0,π),不等式f(x)<f()sinx化为:<,利用单调性即可解出;x∈(﹣π,0),不等式f(x)<f()sinx化为:>=,利用单调性即可得出.【解答】解:令g(x)=,x∈(﹣π,0)∪(0,π),g′(x)=<0,0<x<π.∴函数g(x)在(0,π)上单调递减.奇函数f(x)定义域为(﹣π,0)∪(0,π),因此函数g(x)为偶函数.x∈(0,π),不等式f(x)<f()sinx化为:<,∴π>x∈(﹣π,0),不等式f(x)<f()sinx化为:>=,∴.综上可得:x∈:.故答案为:.14.已知sinα+cosβ=,sinβ﹣cosα=,则sin(α﹣β)=.参考答案:﹣【考点】GQ:两角和与差的正弦函数;GG:同角三角函数间的基本关系.【分析】把已知的两等式左右两边平方,利用完全平方公式展开后,分别记作①和②,然后将①+②,左边利用同角三角函数间的基本关系及两角和与差的正弦函数公式化简,右边计算,整理后即可求出sin(α﹣β)的值.【解答】解:∵sinα+cosβ=,sinβ﹣cosα=,∴(sinα+cosβ)2=,(sinβ﹣cosα)2=,即sin2α+2sinαcosβ+cos2β=①,sin2β﹣2sinβcosα+cos2α=②,①+②得:sin2α+2sinαcosβ+cos2β+sin2β﹣2sinβcosα+cos2α=(sin2α+cos2α)+(cos2β+sin2β)+2(sinαcosβ﹣sinβcosα)=1+1+2sin(α﹣β)=2+2sin(α﹣β)=,则sin(α﹣β)=﹣.故答案为:﹣15.复数(i为复数的虚数单位)的模等于___________.参考答案:略16.“命题‘’为假命题”是“”的
A.充要条件
B.必要补充条件
C.充分不必要条件
D.既不充分也不必要条件参考答案:A17.在△ABC中,,角A的平分线与AB边上的中线交于点O,,则的值________.参考答案:【分析】由角平分线定理可得,,则有,将代入化简即可求得结果.【详解】如图,在中,,角的平分线与边上的中线交于点,由角平分线定理可得,,则,即有,,解得.所以本题答案为.【点睛】本题主要考查平面向量的数量积应用,利用基底向量表示目标向量是求解关键,侧重考查数学运算的核心素养.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某小区为解决居民停车难的问题,经业主委员会协调,现决定将某闲置区域改建为停车场.如图,已知该闲置区域是一边靠道路且边界近似于抛物线的区域,现规划改建为一个三角形形状的停车场,要求三角形的一边为原有道路,另外两条边均与抛物线相切.(1)设AB,AC分别与抛物线相切于点,试用P,Q的横坐标表示停车场的面积;(2)请问如何设计,既能充分利用该闲置区域,又对周边绿化影响最小?
参考答案:(1)因为分别与抛物线相切于不妨设<0<则直线:直线:可得所以停车场的面积=其中(2)=
,当且仅当时等号成立令,则(),,令当<<时,<,单调递减;当1>>时,>,单调递增所以,所以当分别与闲置区的抛物线的边界相切于点时,既能充分利用该闲置区域,又对周边绿化影响最小19.设是椭圆上的两点,满足,椭圆的离心率短轴长为,为坐标原点.(1)求椭圆的方程;(2)若直线过椭圆的焦点(为半焦距),求直线的斜率的值.参考答案:略20.共享单车是指企业为校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,某共享单车企业为更好地服务社会,随机调查了100人,统计了这100人每日平均骑行共享单车的时间(单位:分钟),将统计数据分为:六个小组,得到右侧频率分布直方图,已知骑行时间在[60,80),[20,40),[40,60)三组对应的人数依次成等差数列.
(1)求频率分布直方图中a,b的值;(2)估计这100人每日平均骑行共享单车时间的中位数;(保留小数点后两位小数)
(3)若将日平均骑行时间不少于80分钟的用户定义为“忠实用户”,将日平均骑行时间少于40分钟的用户为“潜力用户”,现从上述“忠实用户”与“潜力用户”的人中按分层抽样选出5人,再从这5人中任取3人,求恰好1人为“忠实用户”的概率.
参考答案:(1)由…(1分)
解得,又.…(3分)(2),所以中位数大约是…(6分)
(3)“忠实用户”“潜力用户”的人数之比为:,所以“忠实用户”抽取人,“潜力用户”抽取人,…(8分)
记事件:从5人中任取3人恰有1人为“忠实用户”
设两名“忠实用户”的人记为:,三名“潜力用户”的人记为:,
则这5人中任选3人有:,,,共10种情形,符合题设条件有:共有6种.…(10分)因此恰好1人为“忠实用户”的概率为.…(12分)21.海岛B上有一座海拔1000米的山,山顶A处设有一观测站,上午11时测得一轮船在海岛北偏东,俯角的C处;11时20分又测得该轮船在海岛北偏西,俯角的D处问:(Ⅰ)此轮船的速度是多少?(Ⅱ)如果轮船的航向和速度不变,它何时到达岛的正西方?参考答案:(Ⅰ)如图,由题意知:
∵,
∴
又,∴
∴
∴.
(Ⅱ)如图,延长与正西线交于,作于,则,∴,∴在中,
∴
则轮船从到耗时10分钟(到耗时20分钟),故此轮船11时30分到达岛的正西方.22.(14分)今有甲、乙两个篮球队进行比赛,比赛采用7局4胜制.假设甲、乙两队在每场比赛中获胜的概率都是.并记需要比赛的场数为ξ.(Ⅰ)求ξ大于5的概率;(Ⅱ)求ξ的分布列与数学期望.参考答案:解:(Ⅰ)依题意可知,ξ的可能取值最小为4.当ξ=4时,整个比赛只需比赛4场即结束,这意味着甲连胜4场,或乙连胜4场,于是,由互斥事件的概率计算公式,可得P(ξ=4)=2=.……………..2分当ξ=5时,需要比赛5场整个比赛结束,意味着甲在第5场获胜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门诊护士长工作计划
- 检验科医院感染管理工作计划
- 电视台的实习报告(15篇)
- 2024年度个人经营抵押民间借贷合同规范模板3篇
- 2024名画抵押贷款业务合作协议3篇
- 关于中医的英语演讲
- 中考英语数词复习课件
- 外卖商家管理
- 2024年信阳市息县九年级下学期四校联考中考一模物理试卷
- 我是交通安全代言人
- 中国传统节日演示文稿
- 经济观测的指标体系及其景气指数
- 默纳克电梯故障代码(珍藏版)
- 超星尔雅学习通宏观经济学章节测试答案教学内容
- 人教部编版八年级语文上册课程标准及教材解说(共32张PPT)
- 高中美术 清明上河图-课件
- 小学数学教师专业素养的现状及提升策略
- GB/T 531.1-2008硫化橡胶或热塑性橡胶压入硬度试验方法第1部分:邵氏硬度计法(邵尔硬度)
- GB/T 25000.51-2016系统与软件工程系统与软件质量要求和评价(SQuaRE)第51部分:就绪可用软件产品(RUSP)的质量要求和测试细则
- GB/T 20221-2006无压埋地排污、排水用硬聚氯乙烯(PVC-U)管材
- 第四章自然人
评论
0/150
提交评论