版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省汕头市翠英中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.两圆x2+y2﹣4x+2y+1=0与x2+y2+4x﹣4y﹣1=0的公切线有()A.1条 B.2条 C.3条 D.4条参考答案:C【考点】JB:两圆的公切线条数及方程的确定.【分析】求出两个圆的圆心与半径,判断两个圆的位置关系,然后判断公切线的条数.【解答】解:因为圆x2+y2﹣4x+2y+1=0化为(x﹣2)2+(y+1)2=4,它的圆心坐标(2,﹣1),半径为2;圆x2+y2+4x﹣4y﹣1=0化为(x+2)2+(y﹣2)2=9,它的圆心坐标(﹣2,2),半径为3;因为=5=2+3,所以两个圆相外切,所以两个圆的公切线有3条.故选C.2.已知椭圆的左右焦点为,设为椭圆上一点,当为直角时,点的横坐标
(
)
A.
B.
C.
D.参考答案:B略3.已知F1、F2是椭圆的两焦点,过点F2的直线交椭圆于A、B两点,在△AF1B中,若有两边之和是10,则第三边的长度为()A.6 B.5 C.4 D.3参考答案:A【考点】椭圆的简单性质.【分析】由椭圆的定义得,所以|AB|+|AF2|+|BF2|=16,由此可求出|AB|的长.【解答】解:由椭圆的定义得两式相加得|AB|+|AF2|+|BF2|=16,又因为在△AF1B中,有两边之和是10,所以第三边的长度为:16﹣10=6故选A.4.函数f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有<0恒成立,则不等式f(x)>0的解集为A.(-1,0)(1,+∞)
B.(-1,0)(0,1)C.(-∞,-1)(1,+∞)
D.(-∞,-1)(0,1)参考答案:D5.已知,则的最大值是A.
B.
C.
D.参考答案:B6.已知过抛物线y2=6x焦点的弦长为12,则此弦所在直线的倾斜角是()A.或
B.或C.或
D.参考答案:B略7.某研究机构对儿童记忆能力x和识图能力y进行统计分析,得到如下数据:记忆能力x46810识图能力y3568由表中数据,求得线性回归方程为,若某儿童的记忆能力为12时,则他的识图能力为()A.9.2 B.9.5 C.9.8 D.10参考答案:B【考点】回归分析的初步应用.【分析】利用样本点的中心在线性归回方程对应的直线上,即可得出结论.【解答】解:由表中数据得,,由在直线,得,即线性回归方程为.所以当x=12时,,即他的识图能力为9.5.故选:B.8.定义在R上的函数f(x)满足,当x∈[0,2)时,,函数g(x)=x3+3x2+m.若?s∈[﹣4,﹣2),?t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,则实数m的取值范围是()A.(﹣∞,﹣12] B.(﹣∞,﹣4] C.(﹣∞,8] D.参考答案:C【考点】其他不等式的解法.【分析】由f(x+2)=f(x)得f(﹣)=2f()=2×(﹣2)=﹣4,x∈[﹣4,﹣3],f(﹣)=2f(﹣)=﹣8,?s∈[﹣4,2),f(s)最小=﹣8,借助导数判断:?t∈[﹣4,﹣2),g(t)最小=g(﹣4)=m﹣16,不等式f(s)﹣g(t)≥0恒成立,得出f(s)小=﹣8≥g(t)最小=g(﹣4)=m﹣16,求解即可.【解答】解:∵当x∈[0,2)时,,∴x∈[0,2),f(0)=为最大值,∵f(x+2)=f(x),∴f(x)=2f(x+2),∵x∈[﹣2,0],∴f(﹣2)=2f(0)=2×=1,∵x∈[﹣4,﹣3],∴f(﹣4)=2f(﹣2)=2×1=2,∵?s∈[﹣4,2),∴f(s)最大=2,∵f(x)=2f(x+2),x∈[﹣2,0],∴f(﹣)=2f()=2×(﹣2)=﹣4,∵x∈[﹣4,﹣3],∴f(﹣)=2f(﹣)=﹣8,∵?s∈[﹣4,2),∴f(s)最小=﹣8,∵函数g(x)=x3+3x2+m,∴g′(x)=3x2+6x,3x2+6x>0,x>0,x<﹣2,3x2+6x<0,﹣2<x<0,3x2+6x=0,x=0,x=﹣2,∴函数g(x)=x3+3x2+m,在(﹣∞,﹣2)(0,+∞)单调递增.在(﹣2,0)单调递减,∴?t∈[﹣4,﹣2),g(t)最小=g(﹣4)=m﹣16,∵不等式f(s)﹣g(t)≥0,∴﹣8≥m﹣16,故实数满足:m≤8,故选C.9.已知命题,命题,若为假命题,则实数m的取值范围是()A. B.或 C. D.参考答案:D试题分析:由,可得,由,可得,解得.因为为假命题,所以与都是假命题,若是假命题,则有,若是假命题,则由或,所以符合条件的实数的取值范围为,故选D.考点:命题真假的判定及应用.10.若实数x,y满足则的取值范围是()A.(﹣1,1) B.(﹣∞,﹣1)∪(1,+∞) C.(﹣∞,﹣1) D.[1,+∞)参考答案:B【考点】7C:简单线性规划.【分析】本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与点(1,0)构成的直线的斜率范围.【解答】解:可行域为图中阴影部分,的几何意义是区域内点与点A(1,0)连线的斜率.当过点A的直线与l:x﹣y+1=0平行时,斜率k=1;当直线过点A和B(0,1)时,斜率k=﹣1,故欲使过点A的直线与可行域有公共点,应有k>1或k<﹣1,故>1或<﹣1.故选B.二、填空题:本大题共7小题,每小题4分,共28分11.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是
.参考答案:【考点】椭圆的简单性质;等差数列的性质.【分析】由题意可得,2b=a+c,平方可得4b2=a2+2ac+c2结合b2=a2﹣c2可得关于a,c的二次方程,然后由及0<e<1可求【解答】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:12.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若假设第1组抽出的号码为3,则第5组中用抽签方法确定的号码是.参考答案:35【考点】系统抽样方法.【分析】按照此题的抽样规则我们可以得到抽出的这20个数成等差数列,首项为3,d=8(d是公差),即可得出结论.【解答】解:由题意可得分段间隔是8,抽出的这20个数成等差数列,首项为3,∴第5组中用抽签方法确定的号码是3+32=35.故答案为:35.13.若函数是偶函数,且它的值域为,则___________.参考答案:略14.若曲线与曲线有四个不同的交点,则实数的取值范围是___________.参考答案:略15.设全集,集合,则图中阴影部分表示的集合为
参考答案:16.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.参考答案:略17.设,,,则的大小关系为_▲_.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.参考答案:解析:(Ⅰ)证:∵侧面PAB垂直于底面ABCD,且侧面PAB与底面ABCD的交线是AB,在矩形ABCD中,BC⊥AB,∴BC⊥侧面PAB.-------------3分(Ⅱ)证:在矩形ABCD中,AD∥BC,BC⊥侧面PAB,∴AD⊥侧面PAB.------5分又AD在平面PAD上,所以,侧面PAD⊥侧面PAB-------------------6分(Ⅲ)解:在侧面PAB内,过点P做PE⊥AB.垂足为E,连结EC,∵侧面PAB与底面ABCD的交线是AB,PE⊥AB.∴PE⊥底面ABCD.于是EC为PC在底面ABCD内的射影,-----------8分∴∠PCE为侧棱PC与底面ABCD所成的角,---------------------10分在△PAB和△BEC中,易求得PE=,在Rt△PEC中,∠PCE=450---------------------------------------12分19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱BB1上,且B1D⊥A1F,A1C1⊥A1B1.(Ⅰ)若AC=3,AB=AA1=4,求三棱锥B﹣DEB1的体积;(Ⅱ)求证:平面B1DE⊥平面A1C1F.参考答案:【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】(Ⅰ)由=,能求出三棱锥B﹣DEB1的体积.(Ⅱ)推导出AA1⊥A1C1,A1C1⊥A1B1,从而A1C1⊥平面ABB1A1,进而A1C1⊥B1D,再由B1D⊥A1F,能证明平面B1DE⊥平面A1C1F.【解答】(本小题满分12分)解:(Ⅰ)∵D,E分别为AB,BC的中点,∴DE∥AC,,.(2分)∵A1C1⊥A1B1,∴AC⊥AB,DE⊥DB.∴.∵ABC﹣A1B1C1是直三棱柱,∴B1B⊥平面ABC,BB1=AA1=4,∴=×S△BDE==2,∵=,∴三棱锥B﹣DEB1的体积为2.(6分)证明:(Ⅱ)在直三棱柱ABC﹣A1B1C1中,AA1⊥平面A1B1C,∵A1C1?平面A1B1C1,∴AA1⊥A1C1.(7分)又∵A1C1⊥A1B1,AA1?平面ABB1A1,A1B1?平面ABB1A1,A1B1∩AA1=A1,∴A1C1⊥平面ABB1A1.(8分)∵B1D?平面ABB1A1,∴A1C1⊥B1D.(9分)又∵B1D⊥A1F,A1C1?平面A1C1F,A1F?平面A1C1F,A1C1∩A1F=A1,∴B1D⊥平面A1C1F.(11分)∵直线B1D?平面B1DE,∴平面B1DE⊥平面A1C1F.(12分)【点评】本题三棱锥的体积的求法,考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.20.已知椭圆C:上顶点为D,右焦点为F,过右顶点A作直线,且与y轴交于点,又在直线和椭圆C上分别取点Q和点E,满足(O为坐标原点),连接EQ.(1)求t的值,并证明直线AP与圆相切;(2)判断直线EQ与圆是否相切?若相切,请证明;若不相切,请说明理由.参考答案:(1)由题设,,,又,所以,可得:,所以,即,所以,为圆的半径,所以直线与圆相切.(2)设,,由,则,可得,而:由得代入上式,得又,,代入上式得:所以直线与圆相切.
21.已知向量,(1)求的最大值和最小值;(2)若,求k的取值范围。参考答案:(1)
(2)由22.(本题满分12分)如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)求二面角C1-AD-C的余弦值;(3)试问线段A1B1上是否存在一点E,使AE与DC1成60°角?若存在,确定E点位置;若不存在,说明理由.参考答案:A(1)连接A1C,交AC1于点O,连接OD.由ABC-A1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC的中点,所以OD为△A1BC的中位线,所以A1B∥OD,因为OD?平面ADC1,A1B?平面ADC1,所以A1B∥平面ADC1.(2)由ABC-A1B1C1是直三棱柱,且∠ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44289-2024农村公共法律服务基本规范
- 医用压力紧身衣产品供应链分析
- 艺术家用蜡笔商业机会挖掘与战略布局策略研究报告
- 医用水袋产品供应链分析
- 古拉尔氏水稀次醋酸铅溶液产业链招商引资的调研报告
- 电动下水管道疏通器市场发展前景分析及供需格局研究预测报告
- 哑铃产品供应链分析
- 家务服务行业相关项目经营管理报告
- 电视电脑体机产品供应链分析
- 关于数字化转型的商业咨询服务行业营销策略方案
- AA大华 教育 大华智慧校园 解决方案 V3.30(基线版)
- GB/T 709-2019热轧钢板和钢带的尺寸、外形、重量及允许偏差
- GB/T 14486-2008塑料模塑件尺寸公差
- 《乡土中国》读后感成果展示(高中习作)
- 成都麓湖生态城地产视角分析总结课件
- 管道安全护理课件
- 会打喷嚏的帽子 (1)课件
- 小学音乐湘文艺版 一年级下册 第一课《(音乐游戏)小鹿,小鹿》优质课公开课教案
- 译林版九年级上册英语Unit6 Study skills课件
- 《身体红绿灯》健康教育课件
- 2022年深圳市公务员录用考试《行测》真题及答案(网友回忆版)
评论
0/150
提交评论