版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年重庆南川水江中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,则f(x)()A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数参考答案:B,所以函数是奇函数,并且是增函数,是减函数,根据增函数-减函数=增函数,所以函数是增函数,故选A.2.已知△ABC的顶点B,C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A. B.6 C. D.12参考答案: C【考点】椭圆的简单性质.【分析】由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长.【解答】解:由椭圆的定义:椭圆上一点到两焦点的距离之和等于长轴长2a,可得△ABC的周长为4a=,故选C【点评】本题主要考查数形结合的思想和椭圆的基本性质,难度中等3.数列{an}、{bn}满足bn=2an(n∈N*),则“数列{an}是等差数列”是“数列{bn}是等比数列”的()A.充分但不必要条件 B.必要但不充分条件C.充要条件 D.既不充分也必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【专题】定义法;等差数列与等比数列;简易逻辑.【分析】根据充分条件和必要条件的定义结合等比数列和等差数列的定义进行判断即可.【解答】解:若数列{an}是等差数列,设公差为d,则当n≥2时,=为非零常数,则数列{bn}是等比数列,若数列{bn}是等比数列,设公比为q,则当n≥2时,===q,则an﹣an﹣1=2q为常数,则数列{an}是等差数列,则“数列{an}是等差数列”是“数列{bn}是等比数列”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,根据等比数列和等差数列的定义是解决本题的关键.4.已知全集U=R,集合A={x|x2﹣x=0},B={x|﹣1<x<1},则A∩B=()A.{0}B.{1}C.{0,1}D.?参考答案:A略5.已知函数y=ax3-15x2+36x-24在x=3处有极值,则函数的递减区间为A.(-∞,1),(5,+∞)
B.(1,5)
C.(2,3)
D.(-∞,2),(3,+∞)参考答案:C略6.参考答案:B7.函数在处导数存在,若是的极值点,则(
)A.p是q的充分必要条件B.p是q的必要不充分条件C.p是q的充分不必要条件D.p既不是q的充分条件,也不是q的必要条件参考答案:B【分析】分别判断充分性和必要性,得到答案.【详解】取,易知函数单调递增,没有极值点,但是,所以不充分.是的极值点,必要性是的必要不充分条件故答案选B【点睛】本题考查了充分必要条件,举出反例是简化过程的关键.8.在极坐标系中,圆的圆心的极坐标是(
)A.
B.
C.(1,π)
D.(1,0)参考答案:D9.已知焦点在x轴上的椭圆的离心率为,且它的长轴长等于圆C:x2+y2-2x-15=0的半径,则椭圆的标准方程是()A.+=1 B.+=1
C.+y2=1 D.+=1参考答案:A故选:A.
10.若,则(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.命题“”的否定是
▲
.参考答案:12.二项式展开式中含项的系数是________(用数字回答).参考答案:40【分析】利用二项式展开式的通项公式进行求解即可.【详解】二项式展开式的通项公式为:.令,所以二项式展开式中含项的系数是.故答案为:40【点睛】本题考查了求二项式展开式中某项问题,考查了数学运算能力,属于基础题.13.已知集合A=-1,1,3,B=3,,且BA.则实数的值是______.参考答案:略14.以下四个关于圆锥曲线的命题中①设A、B为两个定点,k为非零常数,||﹣||=k,则动点P的轨迹为双曲线;②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若=(+),则动点P的轨迹为椭圆;③方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率;④双曲线﹣=1与椭圆+y2=1有相同的焦点.其中真命题的序号为(写出所有真命题的序号)参考答案:③④【考点】轨迹方程;椭圆的定义;双曲线的定义;双曲线的简单性质.【分析】①不正确.若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离;②不正确.根据平行四边形法则,易得P是AB的中点.由此可知P点的轨迹是一个圆;③正确.方程2x2﹣5x+2=0的两根和2可分别作为椭圆和双曲线的离心率;④正确.双曲线﹣=1与椭圆+y2=1焦点坐标都是(,0).【解答】解:①不正确.若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离.当点P在顶点AB的延长线上时,K=|AB|,显然这种曲线是射线,而非双曲线;②不正确.根据平行四边形法则,易得P是AB的中点.根据垂径定理,圆心与弦的中点连线垂直于这条弦设圆心为C,那么有CP⊥AB即∠CPB恒为直角.由于CA是圆的半径,是定长,而∠CPB恒为直角.也就是说,P在以CP为直径的圆上运动,∠CPB为直径所对的圆周角.所以P点的轨迹是一个圆,如图.③正确.方程2x2﹣5x+2=0的两根分别为和2,和2可分别作为椭圆和双曲线的离心率.④正确.双曲线﹣=1与椭圆+y2=1焦点坐标都是(,0).故答案为:③④.15.抛物线x2=4y的焦点坐标为.参考答案:(0,1)【考点】抛物线的简单性质.【分析】由抛物线x2=4y的焦点在y轴上,开口向上,且2p=4,即可得到抛物线的焦点坐标.【解答】解:抛物线x2=4y的焦点在y轴上,开口向上,且2p=4,∴∴抛物线x2=4y的焦点坐标为(0,1)故答案为:(0,1)16.设函数的定义域为R,则k的取值范围是
。
A、
B、
C、
D、参考答案:B17.已知是偶函数,且当时,,则当时,=.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字且比1325大的四位数?参考答案:解:(1)符合要求的四位偶数可分为三类:第一类:0在个位时有个;第二类:2在个位时,首位从1,3,4,5中选定1个(有种),十位和百位从余下的数字中选(有种),于是有个;第三类:4在个位时,与第二类同理,也有个.由分类加法计数原理知,共有四位偶数:个.(2)符合要求的五位数中5的倍数的数可分为两类:个位数上的数字是0的五位数有个;个位数上的数字是5的五位数有个.故满足条件的五位数的个数共有个.(3)符合要求的比1325大的四位数可分为三类:第一类:形如2□□□,3□□□,4□□□,5□□□,共个;第二类:形如14□□,15□□,共有个;第三类:形如134□,135□,共有个;由分类加法计数原理知,无重复数字且比1325大的四位数共有:个19.某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60)的频率及全班人数;(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高(保留四位小数).参考答案:【考点】茎叶图;频率分布直方图.【专题】数形结合;数学模型法;概率与统计.【分析】(1)利用茎叶图和频率分布直方图确定分数在[50,60)的面积,然后求出对应的频率和人数.(2)利用茎叶图计算出分数在[80,90)之间的人数,以及对应的频率,然后计算出对应矩形的高【解答】解:(1)由茎叶图可知分数在[50,60)的人数为3人,分数在[50,60)的矩形的面积为0.0125×10=0.125,即分数在[50,60)的频率为0.125;设全班人数为n人,则=0.125,解得n=24(人);(2)则分数在[80,90)之间的人数为24﹣(3+7+10+2)=2人.则对应的频率为=,所以=≈0.0083,即频率分布直方图中[80,90)间的矩形的高为0.0083.【点评】本题考查了茎叶图和频率分布直方图的识别和应用问题,是基础题目.20.已知函数f(x)=2sinxcosx﹣cos2x,x∈R.(1)求函数f(x)的单调递增区间;(2)在△ABC中,内角A、B、C所对边的长分别是a、b、c,若f(A)=2,C=,c=2,求△ABC的面积S△ABC的值.参考答案:【考点】三角函数中的恒等变换应用;正弦定理.【分析】(1)由二倍角公式化简可得f(x)=2sin(2x﹣),令2k≤2x﹣≤2k,k∈Z可解得函数f(x)的单调递增区间.(2)由f(A)=2sin(2A﹣)=2,可得A的值,由正弦定理可解得a=,从而可求S△ABC的值.【解答】解:(1)∵f(x)=2sinxcosx﹣cos2x=sin2x﹣cos2x=2sin(2x﹣),∴令2k≤2x﹣≤2k,k∈Z可解得k≤x≤k,k∈Z,即有函数f(x)的单调递增区间为:[k,k],k∈Z,(2)∵f(A)=2sin(2A﹣)=2,∴2A﹣=2k,k∈Z,即有A=k,k∈Z,∵角A为△ABC中的内角,有0<A<π,∴k=0时,A=,B=π﹣A﹣C=,故由正弦定理可得:,解得a=,∴S△ABC=acsinB=sin=.21.(本小题满分10分)已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.(1)求椭圆的标准方程;(2)与圆相切的直线交椭圆于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年影视演出经纪居间合同正规范本
- 个人物资采购合同2024年
- 2024年新公司成立合伙协议
- 2010年8月30日公务员上午面试真题
- 个人房屋转让合同书2024年
- 吉林公务员面试模拟42
- 中外货物买卖合同书2024年
- 2024年煤矿承包合同
- 2024年标准贸易合同
- 2024年公司兼职劳动合同书范本
- 知名地产装配式建筑绿色白皮书课件
- 雷达技术实验报告
- ZXV10 T502(V1.0)会议电视终端
- 过敏性休克的急救及处理流程教材课件(28张)
- PCB专业英语资料PCB海外销售英语资料
- 新教材湘教湘科版四年级上册科学 1.1 各种各样的声音 教案(教学设计)
- 简支梁、悬臂梁挠度计算程序(自动版)
- 附件16-10smtc工装夹具命名及标识车身
- 宁波参考资料习俗-岁时节物
- 中等职业学校数学课程标准(2020年版)(精排word版)
- DB32T 3904-2020 电动自行车停放充电场所消防技术规范
评论
0/150
提交评论