湖南省邵阳市2023年数学九年级第一学期期末检测模拟试题含解析_第1页
湖南省邵阳市2023年数学九年级第一学期期末检测模拟试题含解析_第2页
湖南省邵阳市2023年数学九年级第一学期期末检测模拟试题含解析_第3页
湖南省邵阳市2023年数学九年级第一学期期末检测模拟试题含解析_第4页
湖南省邵阳市2023年数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市2023年数学九年级第一学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出粒豆子,发现其中粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为()粒.A. B. C. D.2.有一个矩形苗圃园,其中一边靠墙,另外三边用长为的篱笆围成.已知墙长为若平行于墙的一边长不小于则这个苗圃园面积的最大值和最小值分别为()A. B.C. D.3.二次函数y=ax2+bx+c的部分对应值如下表x﹣3﹣2﹣1012y﹣12﹣50343利用二次函数的图象可知,当函数值y>0时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>34.如图,AB是半圆的直径,AB=2r,C、D为半圆的三等分点,则图中阴影部分的面积是()。A.πr2 B.πr2 C.πr2 D.πr25.已知关于的二次函数的图象在轴上方,并且关于的分式方程有整数解,则同时满足两个条件的整数值个数有().A.2个 B.3个 C.4个 D.5个6.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.247.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A. B. C. D.8.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣29.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变 B.团队日工资的方差不变C.团队日工资的中位数不变 D.团队日工资的极差不变10.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>-1 D.-1<m<0二、填空题(每小题3分,共24分)11.如果3是数和6的比例中项,那么__________12.若关于x的一元二次方程的一个根为1,则k的值为__________.13.若点A(m,n)是双曲线与直线的交点,则_________.14.时钟上的分针匀速旋转一周需要60分钟,则经过10分钟,分针旋转了_____度.15.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.16.小亮同学想测量学校旗杆的高度,他在某一时刻测得米长的竹竿竖直放置时影长为米,同时测量旗杆的影长时由于影子不全落在地面上,他测得地面上的影长为米,留在墙上的影高为米,通过计算他得出旗杆的高度是___________米.17.若二次函数的图象经过点(3,6),则18.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=_____.三、解答题(共66分)19.(10分)从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会(1)抽取一名同学,恰好是甲的概率为(2)抽取两名同学,求甲在其中的概率。20.(6分)解方程:3x2+1=2x.21.(6分)如图,在Rt△ABC中,∠C=90°,BC=8,tanB=,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.22.(8分)社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?23.(8分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.24.(8分)如图示,在平面直角坐标系中,二次函数()交轴于,,在轴上有一点,连接.(1)求二次函数的表达式;(2)点是第二象限内的点抛物线上一动点①求面积最大值并写出此时点的坐标;②若,求此时点坐标;(3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转至,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)25.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.26.(10分)如图,反比例函数()的图象与一次函数的图象交于,两点.(1)分别求出反比例函数与一次函数的表达式.(2)当反比例函数的值大于一次函数的值时,请根据图象直接写出的取值范围.

参考答案一、选择题(每小题3分,共30分)1、B【解析】设瓶子中有豆子x粒,根据取出100粒刚好有记号的8粒列出算式,再进行计算即可.【详解】设瓶子中有豆子粒豆子,根据题意得:,解得:,经检验:是原分式方程的解,答:估计瓶子中豆子的数量约为粒.故选:.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.2、C【分析】设垂直于墙面的长为xm,则平行于墙面的长为(20-2x)m,这个苗圃园的面积为ym2,根据二次函数的图象及性质求最值即可.【详解】解:设垂直于墙面的长为xm,则平行于墙面的长为(20-2x)m,这个苗圃园的面积为ym2由题意可得y=x(20-2x)=-2(x-5)2+50,且8≤20-2x≤15解得:2.5≤x≤6∵-2<0,二次函数图象的对称轴为直线x=5∴当x=5时,y取最大值,最大值为50;当x=2.5时,y取最小值,最小值为37.5;故选C.【点睛】此题考查的是二次函数的应用,掌握二次函数的图象及性质是解题关键.3、C【分析】函数值y=1对应的自变量值是:-1、3,在它们之间的函数值都是正数.由此可得y>1时,x的取值范围.【详解】从表格可以看出,二次函数的对称轴为直线x=1,故当x=﹣1或3时,y=1;因此当﹣1<x<3时,y>1.故选C.【点睛】本题主要考查了二次函数与x轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题.4、D【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD.∵点C,D为半圆的三等分点,AB=1r,∴∠AOC=∠BOD=∠COD=180°÷3=60°,OA=r.∵OC=OD,∴△COD是等边三角形,∴∠OCD=60°,∴∠OCD=∠AOC=60°,∴CD∥AB,∴△COD和△CDA等底等高,∴S△COD=S△ACD,∴阴影部分的面积=S扇形CODπr1.故选D.【点睛】本题考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题的关键.5、B【解析】关于的二次函数的图象在轴上方,确定出的范围,根据分式方程整数解,确定出的值,即可求解.【详解】关于的二次函数的图象在轴上方,则解得:分式方程去分母得:解得:当时,;当时,(舍去);当时,;当时,;同时满足两个条件的整数值个数有3个.故选:B.【点睛】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键.6、B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:;故选:B.【点睛】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.7、C【解析】∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===,故选C.点睛:此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.8、D【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【详解】解:∵y=x2−4x+2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x=2时,有最小值−2,当x=−1时,有最大值为y=9−2=1.故选D.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式是解题的关键.9、B【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:=280;调整后的平均数是:=280;故A正确;调整前的方差是:=;调整后的方差是:=;故B错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.10、B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【详解】顶点坐标(m,m+1)在第一象限,则有解得:m>0,故选B.考点:二次函数的性质.二、填空题(每小题3分,共24分)11、【分析】根据比例的基本性质知道,在比例里两个外项的积等于两个内项的积.【详解】因为,在比例里两个外项的积等于两个内项的积,所以,6x=3×3,x=9÷6,x=,故答案为:.【点睛】本题考查了比例中项的概念,熟练掌握概念是解题的关键.12、0【解析】把x=1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.13、5【分析】联立两函数解析式求出交点坐标,得出m,n的值,即可解决本题.【详解】解:联立两函数解析式:,解得:或,当时,,当时,,综上,5,故答案为5.【点睛】本题是对反比例函数和一次函数的综合考查,熟练掌握反比例函数及解一元二次方程知识是解决本题的关键.14、【分析】时钟上的分针匀速旋转一周需要60min,分针旋转了360°;求经过10分,分针的旋转度数,列出算式,计算即可.【详解】根据题意得,×360°=60°.故答案为60°.【点睛】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.15、y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.16、【分析】根据题意画出图形,然后利用某物体的实际高度:影长=被测物体的实际高度:被测物体的影长即可求出旗杆的高度.【详解】根据题意画出如下图形,有,则AC即为所求.设AB=x则解得∴故答案为10.5.【点睛】本题主要考查相似三角形的应用,掌握某物体的实际高度:影长=被测物体的实际高度:被测物体的影长是解题的关键.17、.【详解】试题分析:根据点在抛物线上点的坐标满足方程的关系,由二次函数的图象经过点(3,6)得:.18、1.【分析】根据题意,想要求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所构成的矩形的面积即可,而矩形的面积为双曲线y=的系数k,由此即可求解.【详解】∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=1.故答案为1.【点睛】本题主要考查反比例函数系数k的几何意义,解题的关键是熟练掌握根据反比例函数系数k的几何意义求出矩形的面积.三、解答题(共66分)19、(1);(2).【解析】(1)由从甲、乙、丙、丁4名同学中抽取同学参加学校的座谈会,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁共6种等可能的结果,甲在其中的有3种情况,然后利用概率公式求解即可求得答案.【详解】(1)随机抽取1名学生,可能出现的结果有4种,即甲、乙、丙、丁,并且它们出现的可能性相等,恰好抽取1名恰好是甲的结果有1种,所以抽取一名同学,恰好是甲的概率为,故答案为:;(2)随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等,恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为=.【点睛】本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20、x1=x2=【分析】根据配方法即可求出答案.【详解】解:原方程化为:,∴,∴x1=x2=【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解的解法,本题属于基础题型.21、AC=1;cos∠ADC=【详解】解:在Rt△ABC中,∵BC=8,,∴AC=1.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+12=x2.解得x=3.∴.22、(1)6;(2)40或400【分析】(1)设通道的宽x米,由图中所示可得通道面积为2×28x+2(52-2x)x,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a元,则少租出个车位,根据月租金收入为14400元列方程求出a值即可.【详解】(1)设通道的宽x米,根据题意得:2×28x+2(52-2x)x+640=52×28,整理得:x2-40x+204=0,解得:x1=6,x2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a元,则少租出个车位,根据题意得:(200+a)(64-)=14400,整理得:a2-440a+16000=0,解得:a1=40,a2=400.答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.23、(1)证明见解析;(2)BM=,理由见解析.【分析】(1)利用圆周角定理得到∠ADB=90°,然后就利用等角的余角相等得到结论;(2)如图,连接OD,DM,先计算出BD=8,OA=5,再证明Rt△CBD∽Rt△BAD,利用相似比得到BC=,取BC的中点M,连接DM、OD,如图,证明∠2=∠4得到∠ODM=90°,根据切线的判定定理可确定DM为⊙O的切线,然后计算BM的长即可.【详解】(1)∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理,掌握切线的判定定理及圆周角定理是关键.24、(1);(2)①,点坐标为;②;(3)【分析】(1)根据点坐标代入解析式即可得解;(2)①由A、E两点坐标得出直线AE解析式,设点坐标为,过点作轴交于点,则坐标为,然后构建面积与t的二次函数,即可得出面积最大值和点D的坐标;②过点作,在中,由,,得出点M的坐标,进而得出直线ME的解析式,联立直线ME和二次函数,即可得出此时点D的坐标;(3)根据题意,当点P在点C时,Q点坐标为(-6,6),当点P移动到点A时,Q′点坐标为(-4,-4),动点所经过的路径是直线QQ′,求出两点之间的距离即可得解.【详解】(1)依题意得:,解得∴(2)①∵,∴设直线AE为将A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论