版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年七年级数学下册尖子生培优题典【人教版】专题9.1不等式专项提升训练(重难点培优)班级:___________________姓名:_________________得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海县月考)下列数学表达式中:①﹣3<0.②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x≠2,⑥x+1>3中,不等式有()A.3个 B.4个 C.5个 D.6个2.(2023秋•洞头区期中)若m>n,则下列不等式中正确的是()A.m+2<n+2 B.−1C.n﹣m>0 D.﹣2m+1<﹣2n+13.(2023秋•苍南县期中)在数轴上表示不等式﹣1≤x<2,其中正确的是()A. B. C. D.4.(2023春•泌阳县月考)A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为()A.0℃~2℃ B.0℃~8℃ C.2℃~6℃ D.6℃~8℃5.(2023春•如东县期中)不等式0≤x<2的解()A.为0,1,2 B.为0,1 C.为1,2 D.有无数个6.(2023秋•铜梁区校级月考)已知m、n均为非零有理数,下列结论正确的是()A.若m≠n,则|m|≠|n| B.若|m|=|n|,则m=n C.若m>n>0,则1m>1n D.若m>n7.(2023•义乌市开学)已知三个实数a,b,c满足ab>0,a+b<c,a+b+c=0,则下列结论一定成立的是()A.a<0,b<0,c>0 B.a>0,b>0,c<0 C.a>0,b<0,c>0 D.a>0,b<0,c<08.(2023春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为()A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A9.(2023春•开福区校级期末)若不等式组x>8x<4m无解,则mA.m≤2 B.m<2 C.m≥2 D.m>210.(2023春•罗源县期末)已知a、b、c满足3a+2b﹣4c=6,2a+b﹣3c=1,且a、b、c都为正数.设y=3a+b﹣2c,则y的取值范围为()A.3<y<24 B.0<y<3 C.0<y<24 D.y<24二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2023春•南关区校级期中)如图,写出下图不等式的解集.12.(2023春•如东县期中)若a<b,则−a213.(2023春•德化县期中)若x是非正数,则x0.(填不等号)14.(2023•南京模拟)关于a的不等式的解集在数轴上表示如图所示,则该不等式的解集为.15.(2023•萧山区开学)由不等式ax>b可以推出x<ba,那么a的取值范围是16.(2023春•赤坎区校级期末)若关于x的不等式组x<4x<m的解集是x<4,则P(2﹣m,m+2)在第17.(2023春•浚县期末)若不等式x>y和(a﹣3)x<(a﹣3)y成立,则a的取值范围是.18.(2023春•龙岗区校级期中)阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:a+b2≥ab,当且仅当a=b时取到等号.则函数y=2x+3x(x三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2023春•朝天区期末)已知x>y.(1)比较9﹣x与9﹣y的大小,并说明理由;(2)若mx+4<my+4,求m的取值范围.20.(2023秋•拱墅区月考)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x>y,且(a﹣3)x<(a﹣3)y,求a的取值范围.21.(2023春•保定期末)已知4x﹣y=1.(1)用含x的代数式表示y为,(2)若y的取值范围如图所示,求x的正整数值.22.(2023春•韩城市期末)已知实数x、y满足3x+4y=1.(1)用含有x的式子表示y;(2)若实数y满足y>1,求x的取值范围.23.(2023春•庆云县期末)已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若x=2y=−1是该二元一次方程的一个解,求a(2)若x=2时,y>0,求a的取值范围.24.(2023春•南阳期末)【阅读思考】阅读下列材料:已知“x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x﹣y=2,∴x=y+2;又∵x>1,∴y+2>1∴y>﹣1;又∵y<0,∴﹣1<y<0.①同理1<x<2.②由①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.【启发应用】请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围是;【拓展推广】请按照上述方法,完成下列问题:已知x+y=2,且x>1,y>﹣4,试确定x﹣y的取值范围.2023-2024学年七年级数学下册尖子生培优题典【人教版】专题9.1不等式专项提升训练(重难点培优)班级:___________________姓名:_________________得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海县月考)下列数学表达式中:①﹣3<0.②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x≠2,⑥x+1>3中,不等式有()A.3个 B.4个 C.5个 D.6个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥,共4个.故选:B.2.(2023秋•洞头区期中)若m>n,则下列不等式中正确的是()A.m+2<n+2 B.−1C.n﹣m>0 D.﹣2m+1<﹣2n+1【分析】根据不等式的性质解答.【解答】解:A、由m>n得到:m+2>n+2,故本选项不符合题意.B、由m>n得到:−12m<−C、由m>n得到:n﹣m<0,故本选项不符合题意.D、由m>n得到:﹣2m+1<﹣2n+1,故本选项符合题意.故选:D.3.(2023秋•苍南县期中)在数轴上表示不等式﹣1≤x<2,其中正确的是()A. B. C. D.【分析】不等式﹣1≤x<2在数轴上表示不等式x≥﹣1与x<2两个不等式的公共部分.【解答】解:“≥”实心圆点向右画折线,“<”空心圆圈向左画折线.故在数轴上表示不等式﹣1≤x<2如下:故选:B.4.(2023春•泌阳县月考)A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为()A.0℃~2℃ B.0℃~8℃ C.2℃~6℃ D.6℃~8℃【分析】将A,B两种疫苗储藏在一起,冷库储藏温度正好是A疫苗冷库储藏温度的最低度数和B疫苗冷库储藏温度的最高度数.【解答】解:∵A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,∴A,B两种疫苗储藏在一起,冷库储藏温度要求为2℃~6℃.故选:C.5.(2023春•如东县期中)不等式0≤x<2的解()A.为0,1,2 B.为0,1 C.为1,2 D.有无数个【分析】根据不等式的解集的定义解答即可.【解答】解:不等式0≤x<2的解有无数个.故选:D.6.(2023秋•铜梁区校级月考)已知m、n均为非零有理数,下列结论正确的是()A.若m≠n,则|m|≠|n| B.若|m|=|n|,则m=n C.若m>n>0,则1m>1n D.若m>n【分析】观察所给四个选项中的式子的关系,直接判断比较困难,可考虑应用特殊数法进行计算后再判断;题目中的四个选项中对m、n都有限制条件,可假设出符合条件的m、n的数值,再代入结论中进行验证;如选项A中,由于m≠n,可假设m=1,n=﹣1,再求出m、n的绝对值,根据结果判断它们的大小关系即可,接下来对其他选项进行分析.【解答】解:A、假设m=1,n=﹣1,则m≠n,但|1|=|﹣1|=1,所以选项A错误;B、假设m=1,n=﹣1,则|m|=|n|,但m≠n,所以选项B错误;C、假设m=3,n=2,则1m=13,1nD、由负数的大小比较方法可知选项D正确.故选D.7.(2023•义乌市开学)已知三个实数a,b,c满足ab>0,a+b<c,a+b+c=0,则下列结论一定成立的是()A.a<0,b<0,c>0 B.a>0,b>0,c<0 C.a>0,b<0,c>0 D.a>0,b<0,c<0【分析】根据ab>0,得到a和b同号,再由a+b<c和a+b+c=0,得到a、b为负,c为正.【解答】解:∵ab>0,∴a和b同号,又∵a+b<c和a+b+c=0,∴a<0,b<0,c>0.故选:A.8.(2023春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为()A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A【分析】根据不等式的性质,进行计算即可解答.【解答】解:由题意得:D>A①,A+C>B+D②,B+C=A+D③,由③得:C=A+D﹣B④,把④代入②得:A+A+D﹣B>B+D,2A>2B,∴A>B,∴A﹣B>0,由③得:A﹣B=C﹣D,∵D﹣A>0,∴C﹣D>0,∴C>D,∴C>D>A>B,即B<A<D<C,故选:C.9.(2023春•开福区校级期末)若不等式组x>8x<4m无解,则mA.m≤2 B.m<2 C.m≥2 D.m>2【分析】根据大大小小无解集得到4m≤8,即可得出答案.【解答】解:根据题意得:4m≤8,∴m≤2.故选:A.10.(2023春•罗源县期末)已知a、b、c满足3a+2b﹣4c=6,2a+b﹣3c=1,且a、b、c都为正数.设y=3a+b﹣2c,则y的取值范围为()A.3<y<24 B.0<y<3 C.0<y<24 D.y<24【分析】把c当作常数解方程组,再代入y,根据a、b、c都为正数,求出c的取值范围,从而求解.【解答】解:∵3a+2b﹣4c=6,2a+b﹣3c=1,∴a=2c﹣4,b=9﹣c,∴y=3a+b﹣2c=3(2c﹣4)+9﹣c+2c=3c﹣3,∵a、b、c都为正数,∴2c﹣4>0,9﹣c>0,∴2<c<9,∴3<3c﹣3<24,∴3<y<24.故选A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2023春•南关区校级期中)如图,写出下图不等式的解集x≥﹣2.【分析】根据用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”写出答案即可.【解答】解:该数轴上所表示的不等式的解集为:x≥﹣2.故答案为:x≥﹣2.12.(2023春•如东县期中)若a<b,则−a2>【分析】根据不等式的性质判断即可.【解答】解:∵a<b,∴−a故答案为:>.13.(2023春•德化县期中)若x是非正数,则x≤0.(填不等号)【分析】根据不等关系解决此题.【解答】解:由题意得,x≤0.故答案为:≤.14.(2023•南京模拟)关于a的不等式的解集在数轴上表示如图所示,则该不等式的解集为a≤3.【分析】根据数轴写出不等式的解集.【解答】解:∵,∴不等式的解集为a≤3,故答案为a≤3.15.(2023•萧山区开学)由不等式ax>b可以推出x<ba,那么a的取值范围是a【分析】根据不等式性质3得到a的范围.【解答】解:∵不等式ax>b的解集为x<b∴a<0,即a的取值范围为a<0.故答案为:a<0.16.(2023春•赤坎区校级期末)若关于x的不等式组x<4x<m的解集是x<4,则P(2﹣m,m+2)在第二【分析】利用不等式组的解集“同小取小”得到m≥4,进而确定点P的横坐标与纵坐标的范围,从而得出点P所在象限.【解答】解:∵关于x的不等式组x<4x<m的解集是x∴m≥4.∴2﹣m<0,m+2>0,∴P(2﹣m,m+2)在第二象限.故答案为:二.17.(2023春•浚县期末)若不等式x>y和(a﹣3)x<(a﹣3)y成立,则a的取值范围是a<3.【分析】根据不等式的性质判断即可.【解答】解:∵x>y,∴当a﹣3<0时,(a﹣3)x<(a﹣3)y,∴a<3.故答案为:a<3.18.(2023春•龙岗区校级期中)阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:a+b2≥ab,当且仅当a=b时取到等号.则函数y=2x+3x(x<0)的最大值为﹣26【分析】根据题意先求﹣y的值,再根据不等式的性质求解即可.【解答】解:∵x<0,则2x<0,3x∴﹣y=﹣(2x+3x)≥22x⋅3∴y≤﹣26,当且仅当2x=3x,即x=6故答案为:﹣26.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2023春•朝天区期末)已知x>y.(1)比较9﹣x与9﹣y的大小,并说明理由;(2)若mx+4<my+4,求m的取值范围.【分析】(1)根据不等式的性质3和性质1进行变形即可;(2)不等号的方向改变了,根据不等式的性质3可知,乘以的数为负数,即m<0.【解答】解:(1)9﹣x<9﹣y,理由如下:∵x>y,∴﹣x<﹣y(不等式的性质3),∴9﹣x<9﹣y(不等式的性质1);(2)由x>y可得mx+4<my+4可知,m<0.20.(2023秋•拱墅区月考)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x>y,且(a﹣3)x<(a﹣3)y,求a的取值范围.【分析】(1)先求出(﹣3x+5)﹣(﹣3y+5)的值,再根据x>y判断即可;(2)根据不等式的性质3得出a﹣3<0,再求出答案即可.【解答】解:(1)﹣3x+5<﹣3y+5,理由是:∵x>y,∴y﹣x<0,∴(﹣3x+5)﹣(﹣3y+5)=﹣3x+5+3y﹣5=3y﹣3x=3(y﹣x)<0,∴﹣3x+5<﹣3y+5;(2)∵x>y,(a﹣3)x<(a﹣3)y,∴a﹣3<0,∴a<3,即a的取值范围是a<3.21.(2023春•保定期末)已知4x﹣y=1.(1)用含x的代数式表示y为y=4x﹣1,(2)若y的取值范围如图所示,求x的正整数值.【分析】(1)移项即可得出答案;(2)根据y≤7得出4x﹣1≤7,解之即可.【解答】解:(1)4x﹣y=1则y=4x﹣1,故答案为:y=4x﹣1;(2)由题意可得,4x﹣1≤7,4x≤8,x≤2,故x的正整数值为1、2.22.(2023春•韩城市期末)已知实数x、y满足3x+4y=1.(1)用含有x的式子表示y;(2)若实数y满足y>1,求x的取值范围.【分析】(1)解关于y的方程即可;(2)利用y>1得到关于x的不等式−34x【解答】解:(1)3x+4y=1,4y=﹣3x+1,y=−34x(2)根据题意得−34x解得x<﹣1.23.(2023春•庆云县期末)已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若x=2y=−1是该二元一次方程的一个解,求a(2)若x=2时,y>0,求a的取值范围.【分析】(1)把方程的解代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货物运输承运协议3篇
- 深圳市易夏电子科技有限公司-加工承揽协议书
- 建筑工程技术实习报告
- 房屋委托装修出售合同
- 《重庆配合比宣贯》课件
- 版手房买卖合同
- 个人之间的委托投资协议
- 2024年度知识产权许可使用合同详细解读3篇
- 花的类型课件
- 2024年度物流合同:国际快递服务与供应链管理2篇
- 安全标兵申报材料
- 混凝土搅拌站安装指导工艺课件
- 14普罗米修斯 一等奖创新教学设计
- 工程造价师招聘模板范本
- 保证书(女方出轨)
- 第十四章精神科护理相关的伦理和法律
- 洗车机操作保养规程
- 电杆套筒基础施工方案
- 自我评价主要学术贡献、创新成果及其科学价值或社会经济意义
- chinese chess中国象棋介绍
- MSA执行标准与实施过程
评论
0/150
提交评论