版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南长沙市师大附中教育集团2023-2024学年数学九年级第一学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.42.若a,b是方程x2+2x-2016=0的两根,则a2+3a+b=()A.2016 B.2015 C.2014 D.20123.五张完全相同的卡片上,分别写有数字1,2,3,4,5,现从中随机抽取一张,抽到的卡片上所写数字小于3的概率是()A. B. C. D.4.如图,在正方形ABCD中,AB=4,AC与相交于点O,N是AO的中点,点M在BC边上,P是OD的中点,过点P作PM⊥BC于点M,交于点N′,则PN-MN′的值为()A. B. C. D.5.已知点,,都在反比例函数的图像上,则()A. B. C. D.6.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合7.如图,在矩形中,,在上取一点,沿将向上折叠,使点落在上的点处,若四边形与矩形相似,则的长为()A. B. C. D.18.二次函数,当时,则()A. B. C. D.9.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟 B.3秒钟 C.4秒钟 D.5秒钟10.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或1二、填空题(每小题3分,共24分)11.如图,是锐角的外接圆,是的切线,切点为,,连结交于,的平分线交于,连结.下列结论:①平分;②连接,点为的外心;③;④若点,分别是和上的动点,则的最小值是.其中一定正确的是__________(把你认为正确结论的序号都填上).12.在△ABC和△A'B'C'中,===,△ABC的周长是20cm,则△A'B'C的周长是_____.13.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.14.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA=,则CD的长等于_____.15.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.16.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.17.如图,AB∥DE,AE与BD相交于点C.若AC=4,BC=2,CD=1,则CE的长为_____.18.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30km时,甲的行驶时间为1h、3h、h;其中正确的是__________.三、解答题(共66分)19.(10分)从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t﹣5t2,那么小球抛出秒后达到最高点.20.(6分)解下列方程(1)x2+4x﹣1=0(2)(y+2)2=(3y﹣1)221.(6分)解下列方程:配方法.22.(8分)已知关于x的方程(1)求证:方程总有两个实数根(2)若方程有一个小于1的正根,求实数k的取值范围23.(8分)列方程解应用题.青山村种的水稻2010年平均每公顷产6000kg,2012年平均每公顷产7260kg,求水稻每公顷产量的年平均增长率.24.(8分)如图,在平面直角坐标系中,抛物线的顶点坐标为,与轴交于点,与轴交于点,.(1)求二次函数的表达式;(2)过点作平行于轴,交抛物线于点,点为抛物线上的一点(点在上方),作平行于轴交于点,当点在何位置时,四边形的面积最大?并求出最大面积.25.(10分)如图,在△ABC中,点D在BC边上,BC=3CD,分别过点B,D作AD,AB的平行线,并交于点E,且ED交AC于点F,AD=3DF.(1)求证:△CFD∽△CAB;(2)求证:四边形ABED为菱形;(3)若DF=,BC=9,求四边形ABED的面积.26.(10分)某商场秋季计划购进一批进价为每件40元的T恤进行销售.(1)根据销售经验,应季销售时,若每件T恤的售价为60元,可售出400件;若每件T恤的售价每提高1元,销售量相应减少10件.①假设每件T恤的售价提高x元,那么销售每件T恤所获得的利润是____________元,销售量是_____________________件(用含x的代数式表示);②设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每件T恤的售价.(2)根据销售经验,过季处理时,若每件T恤的售价定为30元亏本销售,可售出50件;若每件T恤的售价每降低1元,销售量相应增加5条,①若剩余100件T恤需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每件T恤的售价应是多少元?②若过季需要处理的T恤共m件,且100≤m≤300,过季亏损金额最小是__________________________元(用含m的代数式表示).(注:抛物线顶点是)
参考答案一、选择题(每小题3分,共30分)1、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.2、C【分析】先根据一元二次方程的解的定义得到a2+2a-2016=0,即a2+2a=2016,则a2+3a+b化简为2016+a+b,再根据根与系数的关系得到a+b=-2,然后利用整体代入的方法计算即可.【详解】∵a是方程x2+2x-2016=0的实数根,
∴a2+2a-2016=0,
∴a2=-2a+2016,
∴a2+3a+b=-2a+2016+3a+b=a+b+2016,
∵a、b是方程x2+2x-2016=0的两个实数根,
∴a+b=-2,
∴a2+3a+b=-2+2016=1.
故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.也考查了一元二次方程的解.3、B【分析】用小于3的卡片数除以卡片的总数量可得答案.【详解】由题意可知一共有5种结果,其中数字小于3的结果有抽到1和2两种,所以.故选:B.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.4、A【分析】根据正方形的性质可得点O为AC的中点,根据三角形中位线的性质可求出PN的长,由PM⊥BC可得PM//CD,根据点P为OD中点可得点N′为OC中点,即可得出AC=4CN′,根据MN′//AB可得△CMN′∽△CBA,根据相似三角形的性质可求出MN′的长,进而可求出PN-MN′的长.【详解】∵四边形ABCD是正方形,AB=4,∴OA=OC,AD=AB=4,∵N是AO的中点,P是OD的中点,∴PN是△AOD的中位线,∴PN=AD=2,∵PM⊥BC,∴PM//CD//AB,∴点N′为OC的中点,∴AC=4CN′,∵PM//AB,∴△CMN′∽△CBA,∴,∴MN′=1,∴PN-MN′=2-1=1,故选:A.【点睛】本题考查正方形的性质、三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握三角形中位线的性质及相似三角形的判定定理是解题关键.5、D【解析】根据反比例函数的解析式知图像在二、四象限,y值随着x的增大而减小,故可作出判断【详解】∵k0,∴反比例函数在二、四象限,y值随着x的增大而减小,又∵,在反比例函数的图像上,,2∴0,点在第二象限,故,∴,故选D.【点睛】此题主要考察反比例函数的性质,找到点在第二象限是此题的关键.6、B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选B.考点:中心对称.7、C【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:∵AB=1,可得AF=BE=1,
设DF=x,则AD=x+1,FE=1,
∵四边形EFDC与矩形ABCD相似,∴,即:,解得,(不合题意舍去),经检验是原方程的解,∴DF的长为,故选C.【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.8、D【分析】因为=,对称轴x=1,函数开口向下,分别求出x=-1和x=1时的函数值即可;【详解】∵=,∴当x=1时,y有最大值5;当x=-1时,y==1;当x=2时,y==4;∴当时,;故选D.【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.9、B【详解】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm1,则BP为(8﹣t)cm,BQ为1tcm,由三角形的面积计算公式列方程得:×(8﹣t)×1t=15,解得t1=3,t1=5(当t=5时,BQ=10,不合题意,舍去).故当动点P,Q运动3秒时,能使△PBQ的面积为15cm1.故选B.【点睛】此题考查借助三角形的面积计算公式来研究图形中的动点问题.10、D【分析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.二、填空题(每小题3分,共24分)11、【分析】如图1,连接,通过切线的性质证,进而由,即可由垂径定理得到F是的中点,根据圆周角定理可得,可得平分;由三角形的外角性质和同弧所对的圆周角相等可得,可得,可得点为得外心;如图,过点C作交的延长线与点通过证明,可得;如图,作点关于的对称点,当点在线段上,且时,.【详解】如图,连接,∵是的切线,∴,∵∴,且为半径∴垂直平分∴∴∴平分,故正确点的外心,故正确;如图,过点C作交的延长线与点,故正确;如图,作点关于的对称点,点与点关于对称,当点在线段上,且时,,且∴的最小值为;故正确.故答案为:.【点睛】本题是相似综合题,考查了圆的相关知识,相似三角形的判定和性质,轴对称的性质,灵活运用这些性质进行推理是本题的关键.12、30cm.【分析】利用相似三角形的性质解决问题即可.【详解】,的周长:的周长=2:3的周长为20cm,的周长为30cm,故答案为:30cm.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.13、1.【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=1个.故答案为:1.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.14、16【解析】如图作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四边形BEDF是矩形,理由面积法求出DE,再利用等腰三角形的性质,求出DF即可解决问题.【详解】连接BD,过点B分别作BM⊥AD于点M,BN⊥DC于点N,∵梯形ABCD是等距四边形,点B是等距点,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案为16.15、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD==.故答案为.16、6【解析】符合条件的最多情况为:即最多为2+2+2=617、1【分析】先证明△ABC∽△EDC,然后利用相似比计算CE的长.【详解】解:∵AB∥DE,∴△ABC∽△EDC,∴,即,∴CE=1.故答案为1【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;灵活应用相似三角形相似的性质进行几何计算.也考查了解直角三角形.18、②③【分析】根据一次函数的性质和该函数的图象对各项进行求解即可.【详解】∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),即①不成立;∵40分钟=小时,∴甲车的速度为460÷(7+)=60(千米/时),即②成立;设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=1.乙车发车时,甲车行驶的路程为60×=40(千米),乙车追上甲车的时间为40÷(1﹣60)=(小时),小时=80分钟,即③成立;乙车刚到达货站时,甲车行驶的时间为(4+)小时,此时甲车离B地的距离为460﹣60×(4+)=180(千米),即④不成立.设当甲乙两车相距30km时,甲的行驶时间为x小时,由题意可得1)乙车未出发时,即解得∵∴是方程的解2)乙车出发时间为解得解得3)乙车出发时间为解得∵所以不成立4)乙车出发时间为解得故当甲乙两车相距30km时,甲的行驶时间为h、1h、3h、h,故⑤不成立故答案为:②③.【点睛】本题考查了两车的路程问题,掌握一次函数的性质是解题的关键.三、解答题(共66分)19、1【解析】试题分析:首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=10t﹣5t2的顶点坐标即可.解:h=﹣5t2+10t,=﹣5(t2﹣6t+9)+45,=﹣5(t﹣1)2+45,∵a=﹣5<0,∴图象的开口向下,有最大值,当t=1时,h最大值=45;即小球抛出1秒后达到最高点.故答案为1.20、(1)x1=﹣2+,x2=﹣2﹣;(2)y1=﹣,y2=.【解析】(1)把常数项1移项后,在左右两边同时加上4配方求解.(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】(1)移项可得:x2+4x=1,两边加4可得:x2+4x+4=4+1,配方可得:(x+2)2=5,两边开方可得:x+2=±,∴x1=﹣2+,x2=﹣2﹣;(2)移项可得:(y+2)2﹣(3y﹣1)2=0,分解因式可得:(y+2+3y﹣1)(y+2﹣3y+1)=0,即(4y+1)(3﹣2y)=0,∴4y+1=0或3﹣2y=0,∴y1=﹣,x2=.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解题的关键.21、;或.
【解析】试题分析:(1)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半的平方,把方程左边写完全平方的形式,然后用直接开平方法求解;(2)把方程右边的项移到左边,然后用因式分解法求解.试题解析:,,即,则,;,,则或,解得:或.22、(1)证明见解析;(2)【分析】(1)证出根的判别式即可完成;(2)将k视为数,求出方程的两个根,即可求出k的取值范围.【详解】(1)证明:∴方程总有两个实数根(2)∴∴∵方程有一个小于1的正根∴∴【点睛】本题考查一元二次方程根的判别式与方程的根之间的关系,熟练掌握相关知识点是解题关键.23、10%【分析】根据增长后的产量=增长前的产量(1+增长率),设增长率是x,则2012年的产量是6000(1+x)2,据此即可列方程,解出即可.【详解】解:设水稻每公顷产量的年平均增长率为x,依题意得6000(1+x)2=7260,解得:x1=0.1,x2=﹣2.1(舍去).答:水稻每公顷产量的年平均增长率为10%.【点睛】此题考查了一元二次方程的应用,解答本题的关键是利用增长率表示出2012年的产量是6000(1+x)2,然后得出方程.24、(1);(2)点的坐标为时,【分析】(1)根据题目已知条件,可以由顶点坐标及A点坐标先求出二次函数顶点式,进而转化为一般式即可;(2)根据题意,先求出直线AB的解析式,再设出点P和D坐标,进而先得出四边形的面积表达式,即可求得面积最大值.【详解】(1)∵顶点坐标为,∴设抛物线解析式为,∵抛物线与轴交于点,∴,∴,∴,∴;(2)当时,,∴,,∴,,设直线的解析式为,∵,,∴,,∴直线的解析式为.设,∴,∴.∵,∴,∴,∵,∴,∵中,对称轴为,∴当,即点的坐标为时,.【点睛】本题主要考查了二次函数解析式及四边形面积的最值,熟练掌握解析式的求法以及最值的求法是解决本题的关键,在求最值的时候注意将对称轴与自变量的取值范围进行对比,进而判断是在何处取最大值.25、(1)见解析;(2)见解析;(3)四边形ABED的面积为1.【分析】(1)由平行线的性质和公共角即可得出结论;(2)先证明四边形ABED是平行四边形,再证出AD=AB,即可得出四边形ABED为菱形;(3)连接AE交BD于O,由菱形的性质得出BD⊥AE,OB=OD,由相似三角形的性质得出AB=3DF=5,求出OB=3,由勾股定理求出OA=4,AE=8,由菱形面积公式即可得出结果.【详解】(1)证明:∵EF∥AB,∴∠CFD=∠CAB,又∵∠C=∠C,∴△CFD∽△CAB;(2)证明:∵EF∥AB,BE∥AD,∴四边形ABED是平行四边形,∵BC=3CD,∴BC:CD=3:1,∵△CFD∽△CAB,∴AB:DF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版建筑材料购销合同书模板
- 二零二五年度台球室租赁及品牌形象合作合同3篇
- 2025购销合同常用文本
- 二零二五年度全新租赁房屋合同住宅押金退还管理协议3篇
- 2025年度全新出售房屋买卖贷款担保合同3篇
- 2025年度年度全新高空缆车运营意外事故免责服务协议3篇
- 二零二五年度智慧社区建设与运营管理协议合同范文2篇
- 2025年农村兄弟分家协议及遗产分配执行方案
- 2025年度养殖场劳务合同(养殖场安全生产监管)3篇
- 二零二五年度创业投资股权代持专项合同2篇
- 四川省义务教育艺术课程设置方案
- 2024年我国人口老龄化问题与对策
- 2024年江西省公务员考试《行测》真题及答案解析
- 家用除湿机产业规划专项研究报告
- 雇人放牛合同模板
- 节能降耗知识培训
- 人教版(2024秋)数学一年级上册 期末综合测试卷课件
- 牛顿迭代的并行化算法
- 2024秋期国家开放大学本科《国际私法》一平台在线形考(形考任务1至5)试题及答案
- 2023-2024学年安徽省淮北市烈山区八年级(上)期末物理试卷
- 建筑垃圾清理运输服务方案
评论
0/150
提交评论