2024年高考第二次模拟考试数学试题(新九省高考专用02)(解析版)_第1页
2024年高考第二次模拟考试数学试题(新九省高考专用02)(解析版)_第2页
2024年高考第二次模拟考试数学试题(新九省高考专用02)(解析版)_第3页
2024年高考第二次模拟考试数学试题(新九省高考专用02)(解析版)_第4页
2024年高考第二次模拟考试数学试题(新九省高考专用02)(解析版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高级中学名校试卷PAGEPAGE12024年高考第二次模拟考试(新九省高考专用02)数学一、选择题1.若集合,,则()A. B.C. D.〖答案〗B〖解析〗由,得,解得或,所以或,因为,所以,对于A,因为,所以,所以A错误,对于B,因为或,,所以,所以B正确,对于C,因为,所以C错误,对于D,因为或,所以,因,所以,所以D错误,故选:B.2.已知,是关于x的方程的两个根.若,则()A. B.1 C. D.2〖答案〗C〖解析〗法一:由,是关于x的方程的两个根,得,所以,所以.法二:由,是关于x的方程的两个根,得,所以,所以.故选:C.3.已知在等腰△ABC中,AB=AC=2,∠BAC=,点D在线段BC上,且,则的值为()A. B. C. D.〖答案〗B〖解析〗设等腰△ABC在边上的高为,因为,所以,所以,所以,所以.故选:B.4.已知向量,,则是向量,夹角为钝角的()A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件〖答案〗C〖解析〗又因为向量,夹角为钝角所以满足所以且因为推不出且,所以充分性不成立又因为且能推出,所以必要性成立所以是向量,夹角为钝角的必要不充分条件故选:C5.一般地,声音大小用声强级(单位:dB)表示,其计算公式为:,其中I为声强,单位,若某种物体发出的声强为,其声强级约为()()A. B. C. D.〖答案〗A〖解析〗由已知得().故选:A.6.“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A为“两位游客中至少有一人选择太湖鼋头渚”,事件B为“两位游客选择的景点不同”,则()A. B. C. D.〖答案〗D〖解析〗由题可得,,所以.故选D.7.已知函数,若函数在上恰有3个零点,则实数的取值范围是()A. B.C. D.〖答案〗D〖解析〗令,则,解得或,即或,因函数在上恰有3个零点,所以,第一个不等式组解得,第二个不等式组解得所以所求取值范围为.故选:D.8.已知双曲线的左右焦点分别为、,过的直线与曲线的左右两支分别交于点,且,则曲线C的离心率为()A. B. C. D.〖答案〗B〖解析〗如图,设,因为,所以,由双曲线的定义得:,所以,,,,,所以,在中,,在中,因为,所以,即,所以故选:B二、选择题9.为庆祝江西籍航天员邓清明顺利从太空返航,邓清明家乡的某所中学举办了一场“我爱星辰大海”航天知识竞赛,满分100分,该校高一(1)班代表队6位参赛学生的成绩(单位:分)分别为:84,100,91,95,95,98,则关于这6位参赛学生的成绩.下列说法正确的是()A.众数为95 B.中位数为93C.平均成绩超过93分 D.第分位数是91〖答案〗ACD〖解析〗将成绩按从小到大的顺序排序为:,对于A,95出现两次,其他数据只出现一次,所以众数为95,故A正确;对于B,中位数为第3,4个数据的平均数,为,故B错误;对于C,平均数为,故C正确;对于D,,所以第分位数是第二个数,为91,故D正确.故选:ACD.10.数列的通项为,它的前项和为,前项积为,则下列说法正确的是()A.数列是递减数列 B.当或者时,有最大值C.当或者时,有最大值 D.和都没有最小值〖答案〗ABC〖解析〗因为数列的通项为,则,所以数列是以为首项,以为公差的等差数列,因为公差,所以数列是递减数列,故选项正确;因为,当时,;当时,,因为,所以当或者时,有最大值,故选项正确;由可知:,,,所以当或者时,有最大值,故选项正确;根据数列前30项为正数,从第31项开始为负数可知:无最小值,因为,当时,,但零乘任何数仍得零,所以有最小值,故选项错误,故选:.11.设为抛物线的焦点,点在上且在轴上方,点,,若,则()A.抛物线的方程为B.点到轴的距离为8C.直线与抛物线相切D.三点在同一条直线上〖答案〗ACD〖解析〗抛物线的焦点,由,有,解得,所以抛物线的方程为,A选项正确;,点在抛物线上且在轴上方,到焦点距离为8,到准线距离也为8,所以点到轴的距离为6,B选项错误;点在抛物线上且在轴上方,到轴的距离为6,有点横坐标为6,代入抛物线方程,可得,则直线的方程为,由消去得,,所以直线与抛物线相切,C选项正确;由,,,得,则三点在同一条直线上,D选项正确.故选:ACD.三、填空题12.已知直线与圆交于两点,则__________;若P是圆C上的一点,则面积的最大值是__________.〖答案〗〖解析〗由题意可知圆的圆心坐标为,半径,则圆心到直线的距离,故;因为是圆上的一点,所以点到直线距离的最大值为,所以面积的最大值是.故〖答案〗为:;.13.《九章算术》是《算经十书》中最重要的一部,全书总结了战国、秦、汉时期的数学成就,内容十分丰富,在数学史上有其独到的成就.在《九章算术》中,将四个面都是直角三角形的四面体称之为“鳖臑”,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.如图,几何体P-ABCD为一个阳马,其中平面ABCD,若,,,且PD=AD=2AB=4,则几何体EFGABCD的外接球表面积为______.〖答案〗〖解析〗设,连接.依题意,四边形是矩形,所以,由于平面,平面,所以,由于平面,所以平面,由于平面,所以,由于,平面,所以面,由于平面,所以.同理可证得,由于,所以都是以为斜边的直角三角形,所以几何体外接球球心是,且半径,所以外接球的表面积为.故〖答案〗为:14.已知的三个内角所对的边分别为,且,则面积的最大值是________;若分别为的内切圆和外接圆半径,则的范围为_________________.〖答案〗.〖解析〗因在三角形中,则由三角形三边关系可得,又利用余弦定理有:,又,则.得,当且仅当,即时取等号.则面积的最大值是;对于第二空,因,则,又,则,因,则.令,其中,因,则在上单调递增,故,得.故〖答案〗为:;.四、解答题15.如图,三棱柱的侧棱长为,底面是边长为2的等边三角形,分别是的中点,.(1)求证:侧面是矩形;(2)若,求直线与平面所成角的余弦值.(1)证明:由题意是的中点,连接,由已知为等边三角形,所以.由已知,平面,所以平面又平面ADE,故,因为,所以,又侧面为平行四边形,所以侧面是矩形(2)解:取中点O,连接,由已知得,底面是边长为2的等边三角形,则,因为,E为的中点,所以,是等边三角形.故,由(1)知平面,平面,所以是,平面,所以⊥平面.以O为原点,过点O作的平行线作为x轴,以所在直线为y轴,z轴建立空间直角坐标系,如上图,故,所以,设平面的法向量为,则,故,取,则,设直线与平面所成角为,则,故,所以直线与平面所成角的余弦值为.16.已知,为椭圆:的左、右焦点.点为椭圆上一点,当取最大值时,.(1)求椭圆的方程;(2)点为直线上一点(且不在轴上),过点作椭圆的两条切线,,切点分别为,,点关于轴的对称点为,连接交轴于点.设,的面积分别为,,求的最大值.解:(1)依题意有当为椭圆短轴端点时最大,此时,则为正三角形,则且,又,,,故椭圆方程为.(2)设,,,若,则切线方程为,若,则在处的切线的斜率必定存在,设该切线的方程为,由可得,整理得,故,整理得到:,故,故切线方程为:,故:,综上,:,同理:因,都过点,则,则方程为,即过定点.故设方程为,,联立,,,又直线方程为:,令得,当且仅当即,时取等号故最大值为.17.现有一种射击训练,每次训练都是由高射炮向目标飞行物连续发射三发炮弹,每发炮弹击中目标飞行物与否相互独立.已知射击训练有A,B两种型号的炮弹,对于A型号炮弹,每发炮弹击中目标飞行物的概率均为p(),且击中一弹目标飞行物坠毁的概率为0.6,击中两弹目标飞行物必坠段;对子B型号炮弹,每发炮弹击中目标飞行物的概率均为q(),且击中一弹目标飞行物坠毁的概率为0.4,击中两弹目标飞行物坠毁的概率为0.8,击中三弹目标飞行物必坠毁.(1)在一次训练中,使用B型号炮弹,求q满足什么条件时,才能使得至少有一发炮弹命中目标飞行物的概率不低于;(2)若,试判断在一次训练中选用A型号炮弹还是B型号炮弹使得目标飞行物坠毁的概率更大?并说明理由.解:(1)因为每次训练都是由高射炮向目标飞行物连续发射三发炮弹,每发炮弹击中目标飞行物与否相互独立,所以在一次训练中,连发三发B型号炮弹,用表示命中目标飞行物的炮弹数,则(服从二项分布),则,即,则,即,则,又,故,所以当时,才能使得至少有一发炮弹命中目标飞行物的概率不低于.(2)在一次训练中,连发三发A型号炮弹,用表示命中目标飞行物的炮弹数,则(服从二项分布),记事件为“使用A型号炮弹使得目标飞行物坠毁”,事件为“使用B型号炮弹使得目标飞行物坠毁”,则,,因为,所以,则,令,则,令,即,则,得,又,所以恒成立,所以在上单调递增,又,则,故,即,所以使用B型号炮弹使得目标飞行物坠毁的概率更大.18.已知函数.(1)若,求实数的取值范围.(2)求证:.(1)解:因为,则,即,反之当时,,令,则,设,由于在单调递增,且,所以当时,,即,当时,即,所以在上单调递减,在上单调递增.所以,即,所以.(2)证明:由(1)可知:①下面证明当时,②等价于,设,当时,当时,,所以在上单调递增,在上单调递减,所以,所以②式成立,由①、②可得:,当时取到“”,取有,,所以,不等式成立.19.约数,又称因数.它的定义如下:若整数除以整数除得的商正好是整数而没有余数,我们就称为的倍数,称为的约数.设正整数共有个正约数,即为.(1)当时,若正整数的个正约数构成等比数列,请写出一个的值;(2)当时,若构成等比数列,求正整数;(3)记,求证:.(1)解:当时正整数的4个正约数构成等比数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论