江苏省靖江外国语学校2023-2024学年数学九上期末质量跟踪监视模拟试题含解析_第1页
江苏省靖江外国语学校2023-2024学年数学九上期末质量跟踪监视模拟试题含解析_第2页
江苏省靖江外国语学校2023-2024学年数学九上期末质量跟踪监视模拟试题含解析_第3页
江苏省靖江外国语学校2023-2024学年数学九上期末质量跟踪监视模拟试题含解析_第4页
江苏省靖江外国语学校2023-2024学年数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省靖江外国语学校2023-2024学年数学九上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B.C. D.2.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30 B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30 D.(30﹣2x)(20﹣x)=×20×303.如图,在△ABC中,若DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.8 B.9 C.10 D.124.如果5x=6y,那么下列结论正确的是()A. B. C. D.5.如图,⊙O是△ABC的外接圆,∠BOC=100°,则∠A的度数为()A.40° B.50° C.80° D.100°6.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为πcm2,则扇形圆心角的度数为()A.120° B.140° C.150° D.160°7.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400D.(80+x)(50+2x)=54008.下列方程中,为一元二次方程的是()A.x=2 B.x+y=3 C. D.9.如图,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A. B. C. D.10.如图,AB是⊙O的直径,OC是⊙O的半径,点D是半圆AB上一动点(不与A、B重合),连结DC交直径AB与点E,若∠AOC=60°,则∠AED的范围为()A.0°<∠AED<180° B.30°<∠AED<120°C.60°<∠AED<120° D.60°<∠AED<150°二、填空题(每小题3分,共24分)11.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.12.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.13.当时,函数的最大值是8则=_________.14.如图,一段抛物线:记为,它与轴交于两点,;将绕旋转得到,交轴于;将绕旋转得到,交轴于;如此进行下去,直至得到,若点在第段抛物线上,则___________.15.已知是方程的根,则代数式的值为__________.16.抛物线y=3(x+2)2+5的顶点坐标是_____.17.将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为_______________________.18.如图,点p是∠的边OA上的一点,点p的坐标为(12,5),则tanα=_____.三、解答题(共66分)19.(10分)AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.(1)求证:CE是⊙O的切线;(2)若BC=BE,判定四边形OBCD的形状,并说明理由.20.(6分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法画树状图或列表的方法求取出的两个小球上的数字之和为5的概率.21.(6分)某居民小区要在一块一边靠墙的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为32m的栅栏围成(如图所示).如果墙长16m,满足条件的花园面积能达到120m2吗?若能,求出此时BC的值;若不能,说明理由.22.(8分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.23.(8分)“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行,某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出50辆;若每辆自行车每降价20元,每月可多售出5辆,求该型号自行车降价多少元时,每月可获利30000元?24.(8分)如图,在□ABCD中,AD是⊙O的弦,BC是⊙O的切线,切点为B.(1)求证:;(2)若AB=5,AD=8,求⊙O的半径.25.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A非常了解”“B了解”“C基本了解”三个等级,并根据调查结果制作了如下图所示两幅不完整的统计图.(1)这次调查的市民人数为,,;(2)补全条形统计图;(3)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A非常了解”的程度.26.(10分)如图,广场上空有一个气球,地面上点间的距离.在点分别测得气球的仰角为,,求气球离地面的高度.(精确到个位)(参考值:,,,)

参考答案一、选择题(每小题3分,共30分)1、D【解析】设AB=x,根据折叠,可证明∠AFB=90°,由tan∠BCE=,分别表示EB、BC、CE,进而证明△AFB∽△EBC,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.【详解】设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故选D.【点睛】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF和△EBC的面积比是解题关键.2、B【分析】根据等量关系:空白区域的面积=矩形空地的面积,列方程即可.【详解】设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.【点睛】本题考查了一元二次方程的实际应用-几何问题,理清题意找准等量关系是解题的关键.3、D【解析】试题分析:由DE∥BC可推出△ADE∽△ABC,所以.因为AD=5,BD=10,DE=4,所以,解得BC=1.故选D.考点:相似三角形的判定与性质.4、A【解析】试题解析:A,可以得出:故选A.5、B【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,得∠BOC=2∠A,进而可得答案.【详解】解:∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC=50°.故选:B.【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、C【解析】根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为πcm2,∴,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=.7、B【详解】根据题意可得整副画的长为(80+2x)cm,宽为(50+2x)cm,则根据长方形的面积公式可得:(80+2x)(50+2x)=1.故应选:B考点:一元二次方程的应用8、C【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、x=2是一元一次方程,故A错误;B、x+y=3是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是关键.9、B【详解】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=90°−∠BAD=42°,∴∠DCA=∠ABD=42°故选B10、D【分析】连接BD,根据圆周角定理得出∠ADC=30°,∠ADB=90°,再根据三角形的外角性质可得到结论.【详解】如图,连接BD,由∵∠AOC=60°,∴∠ADC=30°,∴∠DEB>30°∴∠AED<150°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°-30°=60°,∴∠AED>60°∴60°<∠AED<150°,故选D【点睛】本题考查了圆周角定理和三角形的外角性质.正确应用圆周角定理找出∠ADC=30°,∠ADB=90°是解题的关键.二、填空题(每小题3分,共24分)11、115°【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,

由题意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四边形ABCD是圆内接四边形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.12、.【解析】直接利用概率公式求解可得.【详解】在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:.【点睛】本题考查了概率公式,关键是掌握随机事件的概率事件可能出现的结果数÷所有可能出现的结果数.13、或【分析】先求出二次函数的对称轴,根据开口方向分类讨论决定取值,列出关于a的方程,即可求解;【详解】解:函数,则对称轴为x=2,对称轴在范围内,当a<0时,开口向下,有最大值,最大值在x=2处取得,即=8,解得a=;当a>0时,开口向上,最大值在x=-3处取得,即=8,解得a=;故答案为:或;【点睛】本题主要考查了二次函数的最值,掌握二次函数的性质是解题的关键.14、-1【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【详解】∵y=−x(x−2)(0≤x≤2),∴配方可得y=−(x−1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,−1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,−1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,−1),A6(12,0);∴m=−1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标,学会从一般到特殊的探究方法,属于中考常考题型.15、1【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可.【详解】解:把代入,得,解得,所以.故答案是:1.【点睛】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.16、(﹣2,5)【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.17、y=-x2+5【分析】根据二次函数的图像平移方法“左加右减,上加下减”可直接进行求解.【详解】由将抛物线向左平移5个单位,再向上平移2个单位后得到的抛物线的解析式为;故答案为.【点睛】本题主要考查二次函数的图像平移,熟练掌握二次函数的图像平移方法是解题的关键.18、【分析】根据题意过P作PE⊥x轴于E,根据P(12,5)得出PE=5,OE=12,根据锐角三角函数定义得出,代入进行计算求出即可.【详解】解:过P作PE⊥x轴于E,∵P(12,5),∴PE=5,OE=12,∴.故答案为:.【点睛】本题考查锐角三角函数的定义的应用,注意掌握在Rt△ACB中,∠C=90°,则.三、解答题(共66分)19、(1)证明见解析;(2)四边形OBCD是菱形,理由见解析.【分析】(1)证明∠OCE=90°问题可解;(2)由同角的余角相等,可得∠BCO=∠BOC,再得到△BCO是等边三角形,故∠AOC=120°,再由垂径定理得到AF=CF,推出△COD是等边三角形问题可解.【详解】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OC=OA,∴∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCE,∴∠BCE+∠BCO=90°,∴∠OCE=90°,∴CE是⊙O的切线;(2)解:四边形OBCD是菱形,理由:∵BC=BE,∴∠E=∠ECB,∵∠BCO+∠BCE=∠COB+∠E=90°,∴∠BCO=∠BOC,∴BC=OB,∴△BCO是等边三角形,∴∠AOC=120°,∵F是AC的中点,∴AF=CF,∵OA=OC,∴∠AOD=∠COD=60°,∵OD=OC,∴△COD是等边三角形,∴CD=OD=OB=BC,∴四边形OBCD是菱形.【点睛】本题考查了切线的判定,菱形的判定,垂径定理,等边三角形的判定和性质,解答关键是根据题意找出并证明题目中的等边三角形.20、【解析】用树状图列举出所有情况,看两个小球上的数字之和为5的情况数占总情况数的多少即可.【详解】解:树状图如下:共有6种等可能的结果,.21、花园的面积能达到20m2,此时BC的值为2m.【分析】设AB=xm,则BC=(32﹣2x)m,根据矩形的面积公式结合花园面积为20m2,即可得出关于x的一元二次方程,解之即可得出x的值,结合墙的长度可确定x的值,进而可得出BC的长度.【详解】设AB=xm,则BC=(32﹣2x)m,依题意,得:x(32﹣2x)=20,整理,得:x2﹣16x+60=0,解得:x1=6,x2=1.∵32﹣2x≤16,∴x≥8,∴x=1,32﹣2x=2.答:花园的面积能达到20m2,此时BC的值为2m.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解答本题的关键.22、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.23、(1)该型号自行车的进价为1000元,标价为1元;(2)该型号自行车降价100元或2元时,每月可获利30000元.【分析】(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,根据利润=售价﹣进价结合按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,根据总利润=每辆的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出结论.【详解】解:(1)设该型号自行车的进价为x元,则标价为(1+50%)x元,依题意,得:8×[0.9×(1+50%)x﹣x]=7×[(1+50%)x﹣100﹣x],解得:x=1000,∴(1+50%)x=1.答:该型号自行车的进价为1000元,标价为1元.(2)设该型号自行车降价y元,则平均每月可售出(50+y)辆,依题意,得:(1﹣1000﹣y)(50+y)=30000,整理,得:y2﹣300y+200=0,解得:y1=100,y2=2.答:该型号自行车降价100元或2元时,每月可获利30000元.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.24、(1)证明见解析;(2)⊙O的半径为【分析】(1)连接OB,根据题意求证OB⊥AD,利用垂径定理求证;(2)根据垂径定理和勾股定理求解.【详解】解:(1)连接OB,交AD于点E.∵BC是⊙O的切

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论