中考数学一轮复习考点(精讲精练)复习专题33 与圆有关的位置关系(教师版)_第1页
中考数学一轮复习考点(精讲精练)复习专题33 与圆有关的位置关系(教师版)_第2页
中考数学一轮复习考点(精讲精练)复习专题33 与圆有关的位置关系(教师版)_第3页
中考数学一轮复习考点(精讲精练)复习专题33 与圆有关的位置关系(教师版)_第4页
中考数学一轮复习考点(精讲精练)复习专题33 与圆有关的位置关系(教师版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点33考点33与圆有关的位置关系知识导航知识导航知识精讲知识精讲考点1:点、直线和圆的位置关系1.如果圆的半径为r,某一点到圆心的距离为d,那么:(1)点在圆外⇔d>r;(2)点在圆上⇔d=r;(3)点在圆内⇔d<r。2.直线与圆的位置关系有三种:相离、相切和相交位置关系相离相切相交图形公共点个数012数量关系d>rd=rd<r【例1】已知平面内有SKIPIF1<0和点SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0半径为SKIPIF1<0,线段SKIPIF1<0,SKIPIF1<0,则直线SKIPIF1<0与SKIPIF1<0的位置关系为()A.相离 B.相交 C.相切 D.相交或相切【答案】D【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵⊙O的半径为2cm,线段OA=3cm,线段OB=2cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外.点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.【例2】如图,已知长方形SKIPIF1<0中,SKIPIF1<0,圆B的半径为1,圆A与圆B内切,则点SKIPIF1<0与圆A的位置关系是()A.点C在圆A外,点D在圆A内 B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内 D.点C在圆A内,点D在圆A外【答案】C【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】∵圆A与圆B内切,SKIPIF1<0,圆B的半径为1∴圆A的半径为5∵SKIPIF1<0<5∴点D在圆A内在Rt△ABC中,SKIPIF1<0∴点C在圆A上故选:C方法技巧方法技巧掌握已知点的位置,可以确定该点到圆心的距离与半径的关系,反过来已知点到圆心的距离与半径的关系,可以确定该点与圆的位置关系.针对训练针对训练1.矩形ABCD中,AB=10,BC=42,点P在边AB上,且BP:AP=4:1,如果⊙P是以点P为圆心,PD长为半径的圆,那么下列结论正确的是()A.点B、C均在⊙P外 B.点B在⊙P外,点C在⊙P内 C.点B在⊙P内,点C在⊙P外 D.点B、C均在⊙P内【分析】先求出AP的长,然后利用勾股定理求得圆P的半径PD的长,根据点B、C到P点的距离判断点P与圆的位置关系即可.【解答】解:如图,∵四边形ABCD为矩形,∴AD=BC=42,∵AB=10,BP:AP=4:1,∴AP=2,BP=8,在Rt△ADP中,∵AP=2,AD=42,∴DP=AD在Rt△PBC中,CP=BP2+BC∵8>6,46>6,∴点B,点C均在⊙P外,故选:A2.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是()A.相切 B.相离 C.相交 D.不能确定【分析】作MH⊥OA于H,如图,根据含30度的直角三角形三边的关系得到MH=12OM=52,则【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=12OM=52,∵⊙M的半径为2,∴MH>2,∴⊙M与直线3.点SKIPIF1<0是非圆上一点,若点SKIPIF1<0到SKIPIF1<0上的点的最小距离是SKIPIF1<0,最大距离是SKIPIF1<0,则SKIPIF1<0的半径是______.【答案】SKIPIF1<0或SKIPIF1<0【分析】分点SKIPIF1<0在SKIPIF1<0外和SKIPIF1<0内两种情况分析;设SKIPIF1<0的半径为SKIPIF1<0,根据圆的性质列一元一次方程并求解,即可得到答案.【详解】设SKIPIF1<0的半径为SKIPIF1<0当点SKIPIF1<0在SKIPIF1<0外时,根据题意得:SKIPIF1<0∴SKIPIF1<0当点SKIPIF1<0在SKIPIF1<0内时,根据题意得:SKIPIF1<0∴SKIPIF1<0故答案为:SKIPIF1<0或SKIPIF1<0.考点2:切线的性质与判定1.切线的性质定理:圆的切线垂直于经过切点的半径.2.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.

3.*切线长定理(1)切线长:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长.(2)定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.【例3】如图,SKIPIF1<0、SKIPIF1<0分别与SKIPIF1<0相切于SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0为SKIPIF1<0上一点,则SKIPIF1<0的度数为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=110°,再利用圆周角定理可求∠ADB=55°,再根据圆内接四边形对角互补可求∠ACB.【详解】解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,∵AP、BP是切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°-90°-90°-70°=110°,∴∠ADB=55°,又∵圆内接四边形的对角互补,∴∠ACB=180°-∠ADB=180°-55°=125°.故选:C.【例4】如图,SKIPIF1<0与正五边形SKIPIF1<0的两边SKIPIF1<0相切于SKIPIF1<0两点,则SKIPIF1<0的度数是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根据切线的性质,可得∠OAE=90°,∠OCD=90°,结合正五边形的每个内角的度数为108°,即可求解.【详解】解:∵AE、CD切⊙O于点A、C,∴∠OAE=90°,∠OCD=90°,∴正五边形ABCDE的每个内角的度数为:SKIPIF1<0,∴∠AOC=540°−90°−90°−108°−108°=144°,故选:A.方法技巧方法技巧与切线有关问题常作的辅助线和解题思路(1)连接圆心和直线与圆的公共点——证明该半径与已知直线垂直,则该直线为切线.(2)过圆心作这条直线的垂线段——证明这条垂线段和半径相等,则该直线为切线.(3)当题中已有切线时,常连接圆心和切点得到半径或90°角,由此可展开其他问题的计算或证明.针对训练针对训练1.如图,AB是SKIPIF1<0的直径,BC是SKIPIF1<0的切线,若SKIPIF1<0,则SKIPIF1<0的大小为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根据切线的性质,得∠ABC=90°,再根据直角三角形的性质,即可求解.【详解】解:∵AB是SKIPIF1<0的直径,BC是SKIPIF1<0的切线,∴AB⊥BC,即∠ABC=90°,∵SKIPIF1<0,∴SKIPIF1<0=90°-35°=55°,故选C.2.如图,SKIPIF1<0是SKIPIF1<0的内接三角形,SKIPIF1<0是SKIPIF1<0的直径,点SKIPIF1<0是SKIPIF1<0的中点,SKIPIF1<0交SKIPIF1<0的延长线于点SKIPIF1<0.(1)求证:直线SKIPIF1<0与SKIPIF1<0相切;(2)若SKIPIF1<0的直径是10,SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)见解析;(2)SKIPIF1<0.【分析】(1)连接OD,由点D是SKIPIF1<0的中点得OD⊥BC,由DE//BC得OD⊥DE,由OD是半径可得DE是切线;(2)证明△ODE是等腰直角三角形,可求出OE的长,从而可求得结论.【详解】解:(1)连接OD交BC于点F,如图,∵点SKIPIF1<0是SKIPIF1<0的中点,∴OD⊥BC,∵DE//BC∴OD⊥DE∵OD是SKIPIF1<0的半径∴直线SKIPIF1<0与SKIPIF1<0相切;(2)∵AC是SKIPIF1<0的直径,且AB=10,∴∠ABC=90°,SKIPIF1<0∵OD⊥BC∴∠OFC=90°∴OD//ABSKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0由勾股定理得,SKIPIF1<0∴SKIPIF1<0.3.如图,SKIPIF1<0内接于SKIPIF1<0是SKIPIF1<0的直径SKIPIF1<0的延长线上一点,SKIPIF1<0.过圆心SKIPIF1<0作SKIPIF1<0的平行线交SKIPIF1<0的延长线于点SKIPIF1<0.(1)求证:SKIPIF1<0是SKIPIF1<0的切线;(2)若SKIPIF1<0,求SKIPIF1<0的半径及SKIPIF1<0的值;【答案】(1)见解析;(2)半径为3,SKIPIF1<0【分析】(1)证明SKIPIF1<0是SKIPIF1<0的半径,即证明SKIPIF1<0,结合直径所对圆周角是SKIPIF1<0、等腰△OAC和已知SKIPIF1<0即可求解;(2)由(1)中结论和SKIPIF1<0可知,SKIPIF1<0,再由CD、CE和平行线分线段成比例,即可找到BD、OB、BC、OE的关系,最后利用SKIPIF1<0三边的勾股定理即可求解.【详解】(1)证明:如图,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的直径,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0是SKIPIF1<0的半径,SKIPIF1<0是SKIPIF1<0的切线.(2)SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,∴设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,解得,SKIPIF1<0,SKIPIF1<0.即SKIPIF1<0的半径为3,SKIPIF1<0SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.考点3:三角形的内心和外心(1)三角形的内心到三角形三边的距离都相等;(2)三角形的外心到三角形的三个顶点的距离都相等.【例5】如图,已知点SKIPIF1<0是SKIPIF1<0的外心,∠SKIPIF1<0,连结SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的度数是().A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】结合题意,根据三角形外接圆的性质,作SKIPIF1<0;再根据圆周角和圆心角的性质分析,即可得到答案.【详解】SKIPIF1<0的外接圆如下图∵∠SKIPIF1<0∴SKIPIF1<0故选:C.【例6】如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC等于()A.130° B.125° C.120° D.115°【分析】根据圆周角定理求出∠BOC=2∠A,求出∠A度数,根据三角形内角和定理求出∠ABC+∠ACB,根据三角形的内心得出∠IBC=12∠ABC,∠ICB=12∠【解答】解:∵在△ABC中,∠BOC=140°,O是外心,∴∠BOC=2∠A,∴∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵I为△ABC的内心,∴∠IBC=12∠ABC,∠ICB∴∠IBC+∠ICB=12×110°=55°,∴∠BIC=180°﹣(∠IBC+∠ICB针对训练针对训练1.如图,SKIPIF1<0是SKIPIF1<0的外接圆,CD是SKIPIF1<0的直径.若SKIPIF1<0,弦SKIPIF1<0,则SKIPIF1<0的值为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】连接AD,根据直径所对的圆周角等于90°和勾股定理,可以求得AD的长,然后即可求得∠ADC的余弦值,再根据同弧所对的圆周角相等,可以得到∠ABC=∠ADC,从而可以得到cos∠ABC的值.【详解】解:连接AD,如右图所示,∵CD是⊙O的直径,CD=10,弦AC=6,∴∠DAC=90°,∴AD=SKIPIF1<0=8,∴cos∠ADC=SKIPIF1<0=SKIPIF1<0,∵∠ABC=∠ADC,∴cos∠ABC的值为SKIPIF1<0,故选:A.2.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°【分析】由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.【解答】解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.3.如图,在△ABC中,AB=4,AC=2,BC=5,点I为△ABC的内心,将∠BAC平移,使其顶点与点I重合,则图中阴影部分的周长为()A.4 B.5 C.6 D.7【分析】连接BI、CI,由点I为△ABC的内心,得出BI平分∠ABC,则∠ABI=∠CBI,由平移得AB∥DI,则∠ABI=∠BID,推出∠CBI=∠BID,得出BD=DI,同理可得CE=EI,△DIE的周长=DE+DI+EI=DE+BD+CE=BC=5,即可得出结果.【解答】解:连接BI、CI,如图所示:∵点I为△ABC的内心,∴BI平分∠ABC,∴∠ABI=∠CBI,由平移得:AB∥DI,∴∠ABI=∠BID,∴∠CBI=∠BID,∴BD=DI,同理可得:CE=EI,∴△DIE的周长=DE+DI+EI=DE+BD+CE=BC=5,即图中阴影部分的周长为5,故选:B.专题33与圆有关的位置关系考点1:点、直线和圆的位置关系1.如图,正方形SKIPIF1<0的边长为4,SKIPIF1<0的半径为1.若SKIPIF1<0在正方形SKIPIF1<0内平移(SKIPIF1<0可以与该正方形的边相切),则点A到SKIPIF1<0上的点的距离的最大值为______.【答案】SKIPIF1<0【分析】由题意易得当SKIPIF1<0与BC、CD相切时,切点分别为F、G,点A到SKIPIF1<0上的点的距离取得最大,进而根据题意作图,则连接AC,交SKIPIF1<0于点E,然后可得AE的长即为点A到SKIPIF1<0上的点的距离为最大,由题意易得SKIPIF1<0,则有△OFC是等腰直角三角形,SKIPIF1<0,根据等腰直角三角形的性质可得SKIPIF1<0,最后问题可求解.【详解】解:由题意得当SKIPIF1<0与BC、CD相切时,切点分别为F、G,点A到SKIPIF1<0上的点的距离取得最大,如图所示:SKIPIF1<0连接AC,OF,AC交SKIPIF1<0于点E,此时AE的长即为点A到SKIPIF1<0上的点的距离为最大,如图所示,∵四边形SKIPIF1<0是正方形,且边长为4,∴SKIPIF1<0,∴△OFC是等腰直角三角形,SKIPIF1<0,∵SKIPIF1<0的半径为1,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即点A到SKIPIF1<0上的点的距离的最大值为SKIPIF1<0;故答案为SKIPIF1<0.考点2:切线的性质与判定2.如图,SKIPIF1<0为SKIPIF1<0的直径,点P在SKIPIF1<0的延长线上,SKIPIF1<0与SKIPIF1<0相切,切点分别为C,D.若SKIPIF1<0,则SKIPIF1<0等于()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】连接OC,CP,DP是⊙O的切线,根据定理可知∠OCP=90°,∠CAP=∠PAD,利用三角形的一个外角等于与其不相邻的两个内角的和可求∠CAD=∠COP,在Rt△OCP中求出SKIPIF1<0即可.【详解】解:连接OC,CP,DP是⊙O的切线,则∠OCP=90°,∠CAP=∠PAD,∴∠CAD=2∠CAP,∵OA=OC∴∠OAC=∠ACO,∴∠COP=2∠CAO∴∠COP=∠CAD∵SKIPIF1<0∴OC=3在Rt△COP中,OC=3,PC=4∴OP=5.∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0故选:D.3.如图,在SKIPIF1<0中,SKIPIF1<0切SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,连接SKIPIF1<0.若SKIPIF1<0,则SKIPIF1<0为()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】连接SKIPIF1<0,根据SKIPIF1<0与SKIPIF1<0相切易得SKIPIF1<0,在SKIPIF1<0中,已知SKIPIF1<0,可以求出SKIPIF1<0的度数,根据同弧所对的圆周角是圆心角的一半得出SKIPIF1<0的度数,最后根据SKIPIF1<0可得SKIPIF1<0.【详解】如下图,连接SKIPIF1<0,∵SKIPIF1<0切SKIPIF1<0于点SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0.故选:B.4.如图,SKIPIF1<0是SKIPIF1<0的切线,SKIPIF1<0是切点.若SKIPIF1<0,则SKIPIF1<0______________.【答案】130°【分析】由题意易得SKIPIF1<0,然后根据四边形内角和可求解.【详解】解:∵SKIPIF1<0是SKIPIF1<0的切线,∴SKIPIF1<0,∴由四边形内角和可得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;故答案为130°.5.如图,已知SKIPIF1<0的半径为1,点SKIPIF1<0是SKIPIF1<0外一点,且SKIPIF1<0.若SKIPIF1<0是SKIPIF1<0的切线,SKIPIF1<0为切点,连接SKIPIF1<0,则SKIPIF1<0_____.【答案】SKIPIF1<0【分析】根据圆的切线的性质,得SKIPIF1<0,根据圆的性质,得SKIPIF1<0,再通过勾股定理计算,即可得到答案.【详解】∵SKIPIF1<0是SKIPIF1<0的切线,SKIPIF1<0为切点∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0的半径为1∴SKIPIF1<0∴SKIPIF1<0故答案为:SKIPIF1<0.6.抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,SKIPIF1<0分别与SKIPIF1<0相切于点C,D,延长SKIPIF1<0交于点P.若SKIPIF1<0,SKIPIF1<0的半径为SKIPIF1<0,则图中SKIPIF1<0的长为________SKIPIF1<0.(结果保留SKIPIF1<0)【答案】SKIPIF1<0【分析】连接OC、OD,利用切线的性质得到SKIPIF1<0,根据四边形的内角和求得SKIPIF1<0,再利用弧长公式求得答案.【详解】连接OC、OD,∵SKIPIF1<0分别与SKIPIF1<0相切于点C,D,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的长=SKIPIF1<0(cm),故答案为:SKIPIF1<0..7.如图,在SKIPIF1<0中,SKIPIF1<0,AE平分SKIPIF1<0交BC于点E,点D在AB上,SKIPIF1<0.SKIPIF1<0是SKIPIF1<0的外接圆,交AC于点F.(1)求证:BC是SKIPIF1<0的切线;(2)若SKIPIF1<0的半径为5,SKIPIF1<0,求SKIPIF1<0.【答案】(1)见解析;(2)20【分析】(1)连接OE,由OA=OE,利用等边对等角得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行,得到AC与OE平行,再根据两直线平行同位角相等及∠C为直角,得到OE与BC垂直,可得出BC为圆O的切线;(2)过E作EG垂直于OD,利用AAS得出△ACE≌△AGE,得到AC=AG=8,从而可得OG,利用勾股定理求出EG,再利用三角形面积公式可得结果.【详解】解:(1)证明:连接OE,∵OA=OE,∴∠1=∠3,∵AE平分∠BAC,∴∠1=∠2,∴∠2=∠3,∴OE∥AC,∴∠OEB=∠C=90°,则BC为圆O的切线;(2)过E作EG⊥AB于点G,在△ACE和△AGE中,SKIPIF1<0,∴△ACE≌△AGE(AAS),∴AC=AG=8,∵圆O的半径为5,∴AD=OA+OD=10,∴OG=3,∴EG=SKIPIF1<0=4,∴△ADE的面积=SKIPIF1<0=20.8.如图,在SKIPIF1<0中,SKIPIF1<0,以SKIPIF1<0为直径的SKIPIF1<0交SKIPIF1<0于点D,SKIPIF1<0交SKIPIF1<0的延长线于点E,交SKIPIF1<0于点F.(1)求证:SKIPIF1<0是SKIPIF1<0的切线;(2)若SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)证明见解析;(2)SKIPIF1<0【分析】(1)要证明DE是SKIPIF1<0的切线,只要证明SKIPIF1<0即可.连接OD,根据条件证明SKIPIF1<0,则可推导出SKIPIF1<0.(2)根据条件,在SKIPIF1<0中,求出OE的长,然后证明SKIPIF1<0,从而根据相似比求解即可.【详解】(1)证明:如下图,连接OD,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴DE是SKIPIF1<0的切线.(2)解:∵AC=6,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.9.如图,在SKIPIF1<0中,SKIPIF1<0是直径,弦SKIPIF1<0,垂足为SKIPIF1<0,SKIPIF1<0为SKIPIF1<0上一点,SKIPIF1<0为弦SKIPIF1<0延长线上一点,连接SKIPIF1<0并延长交直径SKIPIF1<0的延长线于点SKIPIF1<0,连接SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,若SKIPIF1<0.(1)求证:SKIPIF1<0是SKIPIF1<0的切线;(2)若SKIPIF1<0的半径为8,SKIPIF1<0,求SKIPIF1<0的长.【答案】(1)见解析;(2)SKIPIF1<0【分析】(1)连接OE,证明OE⊥EF即可;(2)由SKIPIF1<0证得SKIPIF1<0,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE,如图,∵OA=OE∴∠OAE=∠OEA.∵EF=PF,∴∠EPF=∠PEF∵∠APH=∠EPF,∴∠APH=∠EPF,∴∠AEF=∠APH.∵CD⊥AB,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE⊥EF.∵OE是SKIPIF1<0的半径∴EF是圆的切线,(2)∵CD⊥AB∴SKIPIF1<0是直角三角形∵SKIPIF1<0∴SKIPIF1<0设SKIPIF1<0,则SKIPIF1<0由勾股定理得,SKIPIF1<0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论