江苏省泰州市青藤学校2023-2024学年数学九上期末复习检测模拟试题含解析_第1页
江苏省泰州市青藤学校2023-2024学年数学九上期末复习检测模拟试题含解析_第2页
江苏省泰州市青藤学校2023-2024学年数学九上期末复习检测模拟试题含解析_第3页
江苏省泰州市青藤学校2023-2024学年数学九上期末复习检测模拟试题含解析_第4页
江苏省泰州市青藤学校2023-2024学年数学九上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰州市青藤学校2023-2024学年数学九上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知点都在反比例函数的图像上,那么()A. B. C. D.的大小无法确定2.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是()x(分)…13.514.716.0…y(米)…156.25159.85158.33…A.32分 B.30分 C.15分 D.13分3.抛物线可由抛物线如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位4.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A、1个 B、2个C、3个 D、4个5.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=6.如图,在矩形ABCD中,对角线AC,BD交与点O.已知∠AOB=60°,AC=16,则图中长度为8的线段有()A.2条 B.4条C.5条 D.6条7.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.8.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条 B.2条 C.3条 D.4条9.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100° B.105° C.110° D.115°10.计算的结果是()A. B. C. D.11.如图所示的图案是由下列哪个图形旋转得到的()A. B. C. D.12.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50° B.65° C.100° D.130°二、填空题(每题4分,共24分)13.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.14.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.15.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个.16.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为,当水面离桥拱顶的高度DO为4m时,这时水面宽度AB为______________.17.如果a,b,c,d是成比例线段,其中a=2cm,b=6cm,c=5cm,则线段d=_______cm.18.如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数位于第一象限的图象上,则k的值为.三、解答题(共78分)19.(8分)如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形AEOD是正方形.20.(8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求FC的长.21.(8分)用配方法解一元二次方程22.(10分)已知二次函数的图像是经过、两点的一条抛物线.(1)求这个函数的表达式,并在方格纸中画出它的大致图像;(2)点为抛物线上一点,若的面积为,求出此时点的坐标.23.(10分)如图,若b是正数.直线l:y=b与y轴交于点A,直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=6,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.24.(10分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)25.(12分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.26.经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.

参考答案一、选择题(每题4分,共48分)1、C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m和n的大小关系.【详解】解:∵点A(m,1)和B(n,3)在反比例函数(k>0)的图象上,

1<3,

∴m>n.

故选:C.【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.2、B【分析】利用二次函数的性质,由题意,最值在自变量大于14.7小于16.0之间,由此不难找到答案.【详解】最值在自变量大于14.7小于16.0之间,所以最接近摩天轮转一圈的时间的是30分钟.故选:B.【点睛】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.3、A【分析】先将抛物线化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【详解】因为,所以将抛物线先向左平移3个单位,再向下平移2个单位即可得到抛物线,故选A.【点睛】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.4、B【解析】圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.5、B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式6、D【详解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6条线段为1.故选D.7、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.8、C【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:1.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.9、D【解析】根据平行四边形对角相等,邻角互补即可求解.【详解】解:在▱ABCD中,∠A=∠C,∠A+∠D=180°,∵∠A+∠C=130°,∴∠A=∠C=65°,∴∠D=115°,故选D.【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.10、D【分析】根据同底数幂相乘的运算公式进行计算即可.【详解】解:=故选:D.【点睛】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.11、D【解析】由一个基本图案可以通过旋转等方法变换出一些复合图案.【详解】由图可得,如图所示的图案是由绕着一端旋转3次,每次旋转90°得到的,

故选:D.【点睛】此题考查旋转变换,解题关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案.12、C【分析】直接根据题意得出AB=AC,进而得出∠A=50°,再利用圆周角定理得出∠BOC=100°.【详解】解:由题意可得:AB=AC,

∵∠ABC=65°,

∴∠ACB=65°,

∴∠A=50°,

∴∠BOC=100°,

故选:C.【点睛】本题考查圆心角、弧、弦的关系.二、填空题(每题4分,共24分)13、【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.14、x=4【解析】根据函数值相等的点到抛物线对称轴的距离相等,可由点A(1,-4)和点B(6,-4)都在抛物线y=ax²+bx+c的图象上,得到其对称轴为x==1.故答案为x=4.15、1【分析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.【详解】解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有1个.故答案是:1.【点睛】本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.16、【详解】根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.17、15【分析】根据比例线段的定义即可求解.【详解】由题意得:将a,b,c的值代入得:解得:(cm)故答案为:15.【点睛】本题考查了比例线段的定义,掌握比例线段的定义及其基本性质是解题关键.18、【解析】试题分析:连接OB,过B作BM⊥OA于M,∵六边形ABCDEF是正六边形,∴∠AOB=10°.∵OA=OB,∴△AOB是等边三角形.∴OA=OB=AB=1.∴BM=OB•sin∠BOA=1×sin10°=,OM=OB•COS10°=2.∴B的坐标是(2,).∵B在反比例函数位于第一象限的图象上,∴k=2×=.三、解答题(共78分)19、证明见解析.【分析】先根据已知条件判定四边形AEOD为矩形,再利用垂径定理证明邻边相等即可证明四边形AEOD为正方形.【详解】证明:∵OD⊥AB,∴AD=BD=AB.同理AE=CE=AC.∵AB=AC,∴AD=AE.∵OD⊥ABOE⊥ACAB⊥AC,∴∠OEA=∠A=∠ODA=90°,∴四边形ADOE为矩形.又∵AD=AE,∴矩形ADOE为正方形.【点睛】本题考查正方形的判定,解题的关键是先根据已知条件判定四边形AEOD为矩形.20、4cm【解析】试题分析:想求得FC,EF长,那么就需求出BF的长,利用直角三角形ABF,使用勾股定理即可求得BF长.试题解析:折叠长方形一边AD,点D落在BC边的点F处,所以AF=AD=BC=10厘米(2分)在Rt△ABF中,AB=8厘米,AF=10厘米,由勾股定理,得AB2+BF2=AF2∴82+BF2=102∴BF=6(厘米)∴FC=10-6=4(厘米).答:FC长为4厘米.考点:1.翻折变换(折叠问题);2.矩形的性质.21、,【分析】根据配方法解一元二次方程的步骤,解方程即可.【详解】解:移项得x2﹣6x=7,配方得x2﹣6x+9=7+9,即,∴-3=±4,∴,.【点睛】本题考查了配方法解一元二次方程,正确配方是解题的关键:“当二次项系数为1时,方程两边同时加一次项系数一半的平方”.22、(1),图画见解析;(2)或.【分析】(1)利用交点式直接写出函数的表达式,再用五点法作出函数的图象;(2)先求得AB的长,再利用三角形面积法求得点P的纵坐标,即可求得答案.【详解】(1)由题意知:..∵顶点坐标为:-1012303430描点、连线作图如下:(2)设点P的纵坐标为,,∴.∴或,将代入,得:,此时方程无解.将代入,得:,解得:;或.【点睛】本题主要考查了待定系数法求函数的解析式以及利用三角形面积法求点的坐标的应用,求函数图象上的点的坐标的问题一般要转化为求线段的长的问题.23、(1)L的对称轴x=1.5,L的对称轴与a的交点为(1.5,﹣1.5);(2)1;(1);(4)b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【分析】(1)当x=0时,y=x﹣b=﹣b,所以B(0,﹣b),而AB=6,而A(0,b),则b﹣(﹣b)=6,b=1.所以L:y=﹣x2+1x,对称轴x=1.5,当x=1.5时,y=x﹣1=﹣1.5,于是得到结论.(2)由y=﹣(x﹣)2+,得到L的顶点C(,),由于点C在l下方,于是得到结论;(1)由題意得到y1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,得到右交点D(b,0).于是得到结论;(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个.【详解】解:(1)当x=0时,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=6,而A(0,b),∴b﹣(﹣b)=6,∴b=1.∴L:y=﹣x2+1x,∴L的对称轴x=1.5,当x=1.5时,y=x﹣1=﹣1.5,∴L的对称轴与a的交点为(1.5,﹣1.5);(2)y=﹣(x﹣)2+∴L的顶点C(,),∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(1)由题意得y1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,对于L,当y=0时,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=;(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x,直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1010个偶数,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.24、见解析【解析】分别作过乙,丙的头的顶端和相应的影子的顶端的直线得到的交点就是点光源所在处,连接点光源和甲的头的顶端并延长交平面于一点,这点到甲的脚端的距离是就是甲的影长.解:.25、(1),D(-2,4).(2)①当t=3时,W有最大值,W最大值=1.②存在.只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;

(2)①下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DM⊥y轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题.

②难度较大,运用分类讨论思想,可以分三种情况:

(1)当∠P1DA=90°时;(2)当∠P2AD=90°时;(3)当AP3D=90°时。【详解】解:(1)∵抛物线y=ax2-x+3(a≠0)的对称轴为直线x=-2.∴D(-2,4).(2)探究一:当0<t<4时,W有最大值.

∵抛物线交x轴于A、B两点,交y轴于点C,

∴A(-6,0),B(2,0),C(0,3),

∴OA=6,OC=3.

当0<t<4时,作DM⊥y轴于M,

则DM=2,OM=4.

∵P(0,t),

∴OP=t,MP=OM-OP=4-t.

∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t

∴W=t(12-2t)=-2(t-3)2+1

∴当t=3时,W有最大值,W最大值=1.

探究二:

存在.分三种情况:

①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,

∴AE=OA-OE=6-2=4=DE.

∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.

∵DM⊥y轴,OA⊥y轴,

∴DM∥OA,

∴∠MDE=∠DEA=90°,

∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.

∴P1M=DM=2,此时又因为∠AOC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论