江苏省盐城市解放路实验学校2023-2024学年数学九上期末考试试题含解析_第1页
江苏省盐城市解放路实验学校2023-2024学年数学九上期末考试试题含解析_第2页
江苏省盐城市解放路实验学校2023-2024学年数学九上期末考试试题含解析_第3页
江苏省盐城市解放路实验学校2023-2024学年数学九上期末考试试题含解析_第4页
江苏省盐城市解放路实验学校2023-2024学年数学九上期末考试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市解放路实验学校2023-2024学年数学九上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的,那么点B'的坐标是()A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)2.如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的表达式是()A. B. C. D.3.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是()A. B. C. D.4.如图,正比例函数y1=k1x和反比例函数的图象交于A(﹣1,2)、B(1,﹣2)两点,若y1<y2,则x的取值范围是()A.x<﹣1或x>1 B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1 D.﹣1<x<0或x>15.如图,将绕着点按顺时针方向旋转,点落在位置,点落在位置,若,则的度数是()A. B. C. D.6.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个 B.3个 C.2个 D.1个7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定8.如图,在中,D在AC边上,,O是BD的中点,连接AO并延长交BC于E,则()A.1:2 B.1:3 C.1:4 D.2:39.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)10.抛物线向右平移4个单位长度后与抛物线重合,若(-1,3)在抛物线上,则下列点中,一定在抛物线上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)二、填空题(每小题3分,共24分)11.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为,则袋中应再添加红球____个(以上球除颜色外其他都相同).12.如图,ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径,且AE=4,若CD=1,AD=3,则AB的长为______.13.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,点E、F在矩形ABCD的边AB、AD上运动,将△AEF沿EF折叠,使点A′在BC边上,当折痕EF移动时,点A′在BC边上也随之移动.则A′C的取值范围为_____.14.一元二次方程5x2﹣1=4x的一次项系数是______.15.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.16.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;17.如图,有一张直径(BC)为1.2米的圆桌,其高度为0.8米,同时有一盏灯A距地面2米,圆桌的影子是DE,AD和AE是光线,建立图示的平面直角坐标系,其中点D的坐标是(2,0).那么点E的坐标是____.18.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.三、解答题(共66分)19.(10分)已知二次函数y=x2+2mx+(m2﹣1)(m是常数).(1)若它的图象与x轴交于两点A,B,求线段AB的长;(2)若它的图象的顶点在直线y=x+3上,求m的值.20.(6分)(1)计算:;(2)解方程.21.(6分)如图,在平面直角坐标系中,己知点,点在轴上,并且,动点在过三点的拋物线上.(1)求抛物线的解析式.(2)作垂直轴的直线,在第一象限交直线于点,交抛物线于点,求当线段的长有最大值时的坐标.并求出最大值是多少.(3)在轴上是否存在点,使得△是等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(8分)如图,在⊙O中,点D是⊙O上的一点,点C是直径AB延长线上一点,连接BD,CD,且∠A=∠BDC.(1)求证:直线CD是⊙O的切线;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=2时,求MN的长.23.(8分)已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.(1)求证:;(2)求的长.24.(8分)如图示,是的直径,点是半圆上的一动点(不与,重合),弦平分,过点作交射线于点.(1)求证:与相切:(2)若,,求长;(3)若,长记为,长记为,求与之间的函数关系式,并求出的最大值.25.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=20,,CD⊥AB,垂足为D.(1)求BD的长;(2)设,,用、表示.26.(10分)如图,O为∠MBN角平分线上一点,⊙O与BN相切于点C,连结CO并延长交BM于点A,过点A作AD⊥BO于点D.(1)求证:AB为⊙O的切线;(2)若BC=6,tan∠ABC=,求AD的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【详解】解:∵矩形OA′B′C′的面积等于矩形OABC面积的,

∴两矩形面积的相似比为:1:2,

∵B的坐标是(6,4),∴点B′的坐标是:(3,2)或(−3,−2).

故答案为:D.【点睛】此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.2、C【分析】如图,过点A作AC⊥x轴于点C,构建矩形ABOC,根据反比例函数系数k的几何意义知|k|=四边形ABOC的面积.【详解】如图,过点A作AC⊥x轴于点C.则四边形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=−2.又∵函数图象位于第一象限,∴k>0,∴k=2.则反比函数解析式为.故选C.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握反比例函数的性质.3、B【解析】根据中心对称图形的概念:如果一个图形绕某一个点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,逐一判断即可.【详解】A.不是中心对称图形,故错误;B.是中心对称图形,故正确;C.不是中心对称图形,故错误;D.不是中心对称图形,故错误;故选:B.【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.4、D【解析】反比例函数与一次函数的交点问题.根据图象找出直线在双曲线下方的x的取值范围:由图象可得,﹣1<x<0或x>1时,y1<y1.故选D.5、C【解析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【点睛】本题考查了旋转的性质.6、B【解析】试题解析:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有

,即b=,∴tan∠CAD=.故④不正确;故选B.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.7、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.8、B【分析】过O作BC的平行线交AC与G,由中位线的知识可得出,根据已知和平行线分线段成比例得出,再由同高不同底的三角形中底与三角形面积的关系可求出的比.【详解】解:如图,过O作,交AC于G,∵O是BD的中点,∴G是DC的中点.又,设,又,,故选B.【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.9、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.10、A【分析】利用点的平移进行解答即可.【详解】解:∵抛物线向右平移4个单位长度后与抛物线重合∴将(-1,3)向右平移4个单位长度的点在抛物线上∴(3,3)在抛物线上故选:A【点睛】本题考查了点的平移与函数平移规律,掌握点的规律是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解.故答案为:1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12、【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,

∴∠ADC=90°,

∴,

∵AE是直径,

∴∠ABE=90°,

∴∠ABE=∠ADC,

∵∠E=∠C,

∴△ABE∽△ADC,

∴,

∴,

∴,

故答案为:.【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.13、4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C==8(cm);综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.14、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:∵5x2﹣1=4x,方程整理得:5x2﹣4x﹣1=0,则一次项系数是﹣4,故答案为:﹣4【点睛】本题考查了一元二次方程的一般形式,解答本题要通过移项,转化为一般形式,注意移项时符号的变化.15、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.16、【解析】构造K字型相似模型,直接利用相似三角形的判定与性质得出,而由反比例性质可知S△AOD==3,即可得出答案.【详解】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,

∵∠BOA=90°,

∴∠BOC+∠AOD=90°,

∵∠AOD+∠OAD=90°,

∴∠BOC=∠OAD,

又∵∠BCO=∠ADO=90°,

∴△BCO∽△ODA,

∴,

∴,∴S△BCO=S△AOD

∵S△AOD===3,∴S△BCO=×3=1∵经过点B的反比例函数图象在第二象限,

故反比例函数解析式为:y=.

故答案为.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出S△BOC=1是解题关键.17、(4,0)【分析】如图延长CB交y轴于F,由桌面与x轴平行△AFB∽△AOD,求FB=1.2,由△AFC∽△AOE,可求OE即可.【详解】如图,延长CB交y轴于F,∵桌面与x轴平行即BF∥OD,∴△AFB∽△AOD,∵OF=0.8,∴AF=AO-OF=2-0.8=1.2,∵OA=OD=2,则AF=FB=1.2,BC=1.2,FC=FB+BC=1.2+1.2=2.4,∵FC∥x轴,∴△AFC∽△AOE,∴,∴=4,E(4,0).故答案为:(4,0)..【点睛】本题考查平行线截三角形与原三角形相似,利用相似比来解,关键是延长CB与y轴相交,找到了已知与未知的比例关系从而解决问题.18、0〈x〈1或x〈-2【分析】利用一次函数图象和反比例函数图象性质数形结合解不等式:【详解】解:a+1=-1,a=-2,由函数图象与不等式的关系知,0<x<1或x<-2.故答案为0<x<1或x<-2.三、解答题(共66分)19、AB=2;(2)m=1.【分析】(1)令y=0求得抛物线与x轴的交点,从而求得两交点之间的距离即可;(2)用含m的式子表示出顶点坐标,然后代入一次函数的解析式即可求得m的值.【详解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函数y=x2+2mx+(m2﹣1),∴顶点坐标为(﹣2m,),即:(﹣2m,﹣1),∵图象的顶点在直线y=x+3上,∴﹣×(﹣2m)+3=﹣1,解得:m=1.【点睛】本题考查了解二次函数的问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.20、(1);(2)无解【分析】(1)先算开方,0指数幂,绝对值,再算加减;(2)两边同时乘以,去分母,再解整式方程.【详解】(1)解:原式==(2)解:两边同时乘以,得:经检验是原方程的增根,∴原方程无解.【点睛】考核知识点:解分式方程.把分式方程化为整式方程是关键.21、(1);(2)存在,最大值为4,此时的坐标为;(3)存在,或或或【分析】(1)先确定A(4,0),B(-1,0),再设交点式y=a(x+1)(x-4),然后把C点坐标代入求出a即可;(2)作PE⊥x轴,交AC于D,垂足为E,如图,易得直线AC的解析式为y=-x+4,设P(x,-x2+3x+4)(0<x<4),则D(x,-x+4),再用x表示出PD,然后根据二次函数的性质解决问题;(3)先计算出AC=4,再分类讨论:当QA=QC时,易得Q(0,0);当CQ=CA时,利用点Q与点A关于y轴对称得到Q点坐标;当AQ=AC=4时可直接写出Q点的坐标.【详解】(1)∵C(0,4),∴OC=4,∵OA=OC=4OB,∴OA=4,OB=1,∴A(4,0),B(-1,0),设抛物线解析式为y=a(x+1)(x-4),把C(0,4)代入得a×1×(-4)=4,解得a=-1,∴抛物线解析式为y=-(x+1)(x-4),即y=-x2+3x+4;(2)作PE⊥x轴,交AC于D,垂足为E,如图,设直线AC的解析式为:y=kx+b,∵A(4,0),C(0,4)∴解得,∴直线AC的解析式为y=-x+4,设P(x,-x2+3x+4)(0<x<4),则D(x,-x+4),∴PD=-x2+3x+4-(-x+4)=-x2+4x=-(x-2)2+4,当x=2时,PD有最大值,最大值为4,此时P点坐标为(2,6);(3)存在.∵OA=OC=4,∴AC=4,∴当QA=QC时,Q点在原点,即Q(0,0);当CQ=CA时,点Q与点A关于y轴对称,则Q(-4,0);当AQ=AC=4时,Q点的坐标(4+4,0)或(4-4,0),综上所述,Q点的坐标为(0,0)或(-4,0)或(4+4,0)或(4-4,0).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图形上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.22、(1)见解析;(2)MN=2.【解析】(1)如图,连接OD.欲证明直线CD是⊙O的切线,只需求得∠ODC=90°即可;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【详解】(1)证明:如图,连接OD.∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵OD=OB,∴∠ABD=∠ODB,∵∠A=∠BDC;∴∠CDB+∠ODB=90°,即∠ODC=90°.∵OD是圆O的半径,∴直线CD是⊙O的切线;(2)解:∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=2,∴DN=DM=2,∴MN==2.【点睛】本题主要考查切线的性质、圆周角定理、角平分线的性质及勾股定理,熟练掌握切线的性质:圆的切线垂直于过切点的半径是解本题的关键.23、(1)证明见解析;(1)EM=4.【解析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(1)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度.【详解】(1)连接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(1)∵DC是⊙O的直径,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC为正数,∴EC=2.∵M为OB的中点,∴BM=1,AM=3.∵AM•BM=EM•CM=EM•(EC﹣EM)=EM•(2﹣EM)=11,且EM>MC,∴EM=4.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、勾股定理的知识点,解答本题的关键是根据已知条件和图形作辅助线.24、(1)详见解析;(2)4;(3)【分析】(1)首先连接,通过半径和角平分线的性质进行等角转换,得出,进而得出,即可得证;(2)首先连接,得出,进而得出,再根据勾股定理得出DE;(3)首先连接,过点作,得出,再得,进而得出,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接∵∴∵平分∴∴∴∵∴又∵是的半径∴与相切(2)解:连接∵AB为直径∴∠ADB=90°∵∴∴∴∴中(3)连接,过点作于∵,DE⊥AE,AD=AD∴∴,DE=DG∴∴∴即:∴∴根据二次函数知识可知:当时,【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.25、(1)9;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论