江苏省扬州市高邮市2023-2024学年数学九上期末调研试题含解析_第1页
江苏省扬州市高邮市2023-2024学年数学九上期末调研试题含解析_第2页
江苏省扬州市高邮市2023-2024学年数学九上期末调研试题含解析_第3页
江苏省扬州市高邮市2023-2024学年数学九上期末调研试题含解析_第4页
江苏省扬州市高邮市2023-2024学年数学九上期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市高邮市2023-2024学年数学九上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,已知是中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE2.,,,π四个实数,任取一个数是无理数的概率为()A. B. C. D.13.如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A.0.620 B.0.618 C.0.610 D.10004.下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨5.关于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定6.如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为().A. B. C. D.7.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n=-2m B.n=- C.n=-4m D.n=-8.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm9.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米10.“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件 B.随机事件 C.确定事件 D.不可能事件11.如图,在中,点,分别在,边上,,,若,,则线段的长为()A. B. C. D.512.如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24 B.25 C.30 D.36二、填空题(每题4分,共24分)13.如图,在中,,,延长至点,使,则________.14.若,,则______.15.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为__16.某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦”演讲比赛,则恰好选中一男一女的概率是_____.17.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为______度.18.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.三、解答题(共78分)19.(8分)已知△ABC和△A′B′C′的顶点坐标如下表:(1)将下表补充完整,并在下面的坐标系中,画出△A′B′C′;(,)(,)(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.20.(8分)矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若抛物线经过A、D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.21.(8分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ=.(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.22.(10分)如果一条抛物线与坐标轴有三个交点.那么以这三个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)命题“任意抛物线都有抛物线三角形”是___________(填“真”或“假”)命题;(2)若抛物线解析式为,求其“抛物线三角形”的面积.23.(10分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围.24.(10分)已知:关于x的方程,根据下列条件求m的值.(1)方程有一个根为1;(2)方程两个实数根的和与积相等.25.(12分)万州三中初中数学组深知人生最具好奇心和幻想力、创造力的时期是中学时代,经研究,为我校每一个初中生推荐一本中学生素质数育必读书《数学的奥秘》,这本书就是专门为好奇的中学生准备的.这本书不但给于我们知识,解答生活中的疑惑,更重要的是培养我们细致观察、认真思考、勤于动手的能力.经过一学期的阅读和学习,为了了解学生阅读效果,我们从初一、初二的学生中随机各选20名,对《数学的奥秘》此书阅读效果做测试(此次测试满分:100分).通过测试,我们收集到20名学生得分的数据如下:初一96100899562759386869395958894956892807890初二10098969594929292929286848382787874646092通过整理,两组数据的平均数、中位数、众数和方差如表:年级平均数中位数众数方差初一87.591m96.15初二86.2n92113.06某同学将初一学生得分按分数段(,,,),绘制成频数分布直方图,初二同学得分绘制成扇形统计图,如图(均不完整),初一学生得分频数分布直方图初二学生得分扇形统计图(注:x表示学生分数)请完成下列问题:(1)初一学生得分的众数________;初二学生得分的中位数________;(2)补全频数分布直方图;扇形统计图中,所对用的圆心角为________度;(3)经过分析________学生得分相对稳定(填“初一”或“初二”);(4)你认为哪个年级阅读效果更好,请说明理由.26.如图所示,一辆单车放在水平的地面上,车把头下方处与坐垫下方处在平行于地面的同一水平线上,,之间的距离约为,现测得,与的夹角分别为与,若点到地面的距离为,坐垫中轴处与点的距离为,求点到地面的距离(结果保留一位小数).(参考数据:,,)

参考答案一、选择题(每题4分,共48分)1、C【分析】根据相似三角形的判定,采用排除法,逐项分析判断.【详解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正确.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正确.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正确.而不能证明△BDF∽△BEC,故C错误.故选C.【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.2、B【分析】先求出无理数的个数,再根据概率公式即可得出结论;【详解】∵共有4种结果,其中无理数有:,π共2种情况,∴任取一个数是无理数的概率;故选B.【点睛】本题主要考查了概率公式,无理数,掌握概率公式,无理数是解题的关键.3、B【解析】结合给出的图形以及在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,解答即可.【详解】由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.1附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.1.故选B.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.4、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、任意购买一张电影票,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、A【解析】试题解析:△=b2-4ac=m2-4(m-2)=m2-4m+8=(m-2)2+4>0,所以方程有两个不相等的实数根.故选:A.点睛:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案.【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A.【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.7、B【解析】试题分析:首先根据点C的坐标为(m,n),分别求出点A为(,n),点B的坐标为(-,-n),根据图像知B、C的横坐标相同,可得-=m.故选B点睛:此题主要考查了反比例函数的图像上的点的坐标特点,解答此题的关键是要明确:①图像上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在坐标系的图像上任取一点,过这个点向x轴、y轴分别作垂线.与坐标轴围成的矩形的面积是一个定值|k|.8、B【解析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,,又MN=4,所以,MP=22.所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.9、C【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选C.【点睛】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.10、B【详解】随机事件.根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.11、C【解析】设,,所以,易证,利用相似三角形的性质可求出的长度,以及,再证明,利用相似三角形的性质即可求出得出,从而可求出的长度.【详解】解:设,,∴,∵,∴,∴,∴,∴,,∵,,∴,∵,∴,∴,设,,∴,∴,∴,∴,故选C.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.12、C【分析】根据题意及直角三角形斜边上的中线等于斜边的一半可得:AB=2CE=12再根据三角形面积公式,即△ABC面积=AB×CD=30.故选C.【详解】解:∵CE是斜边AB上的中线,∴AB=2CE=2×6=12,∴S△ABC=×CD×AB=×5×12=30,故选:C.【点睛】本题的考点是直角三角形斜边上的中线性质及三角形面积公式.方法是根据题意求出三角形面积公式中的底,再根据面积公式即可得出答案.二、填空题(每题4分,共24分)13、【分析】过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,目的得到直角三角形利用三角函数得△AFC三边的关系,再证明△ACF∽△DCE,利用相似三角形性质得出△DCE各边比值,从而得解.【详解】解:过点A作AF⊥BC于点,过点D作DE⊥AC交AC的延长线于点E,∵,∴∠B=∠ACF,sin∠ACF==,设AF=4k,则AC=5k,CD=,由勾股定理得:FC=3k,∵∠ACF=∠DCE,∠AFC=∠DEC=90°,∴△ACF∽△DCE,∴AC:CD=CF:CE=AF:DE,即5k:=3k:CE=4k:DE,解得:CE=,DE=2k,即AE=AC+CE=5k+=,∴在Rt△AED中,DE:AE=2k:=.故答案为:.【点睛】本题考查三角函数定义、相似三角形的判定与性质,解题关键是构造直角三角形.14、28【分析】先根据完全平方公式把变形,然后把,代入计算即可.【详解】∵,,∴(a+b)2-2ab=36-8=28.故答案为:28.【点睛】本题考查了完全平方公式的变形求值,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.15、1【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=-2(x-1)2+1.根据二次函数的性质来求最值即可.【详解】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+1.∴当x=1时,C最大值=1.即:四边形OAPB周长的最大值为1.【点睛】本题主要考查二次函数的最值以及二次函数图象上点的坐标特征.设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+1.最后根据根据二次函数的性质来求最值是关键.16、【解析】结合题意,画树状图进行计算,即可得到答案.【详解】画树状图为:共20种等可能的结果数,其中选中一男一女的结果数为12,∴恰好选中一男一女的概率是,故答案为:.【点睛】本题考查概率,解题的关键是熟练掌握树状图法求概率.17、【分析】设扇形的弧长,然后,建立关系式,结合二次函数的图象与性质求解最值即可.【详解】设扇形面积为S,半径为r,圆心角为α,则扇形弧长为a-2r,所以S=(a-2r)r=-(r-)2+.故当r=时,扇形面积最大为.∴∴此时,扇形的弧长为2r,∴,∴故答案为:.【点睛】本题重点考查了扇形的面积公式、弧长公式、二次函数的最值等知识,属于基础题.18、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.三、解答题(共78分)19、(1)详见解析;(2)相似【分析】(1)利用坐标的变化规律得出答案;(2)根据所画的图形,利用对应点位置得到线段的长度,即可得到结论.【详解】解:(1)B′(

8,6

),C′(

10,2

),

如图所示:△A′B′C′即为所求;故答案为:8,6;10,2;(2)根据表格和所画的图形可知,,∴.【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.20、(3)点D的坐标为(3,3);(3)抛物线的解析式为;(3)符合条件的点P有两个,P3(3,0)、P3(3,-4).【分析】(3)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案.(3)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案.(3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况.【详解】(3)∵四边形OABC为矩形,C(0,3)∴BC∥OA,点D的纵坐标为3.∵直线与BC边相交于点D,∴.∴点D的坐标为(3,3).(3)∵若抛物线经过A(6,0)、D(3,3)两点,∴解得:,∴抛物线的解析式为(3)∵抛物线的对称轴为x=3,设对称轴x=3与x轴交于点P3,∴BA∥MP3,∴∠BAD=∠AMP3.①∵∠AP3M=∠ABD=90°,∴△ABD∽△AMP3.∴P3(3,0).②当∠MAP3=∠ABD=90°时,△ABD∽△MAP3.∴∠AP3M=∠ADB∵AP3=AB,∠AP3P3=∠ABD=90°∴△AP3P3≌△ABD∴P3P3=BD=4∵点P3在第四象限,∴P3(3,-4).∴符合条件的点P有两个,P3(3,0)、P3(3,-4).21、(1)2;(2)见解析;(3)存在,QP的值为或8或.【分析】(1)利用勾股定理求出AC,设HQ=x,根据构建方程即可解决问题;(2)利用对折与平行线的性质证明四边相等即可解决问题;(3)设AE=EM=FM=AF=2m,则BM=3m,FB=5m,构建方程求出m的值,分两种情形分别求解即可解决问题.【详解】解:(1)如图1中,在△ABC中,∵∠ACB=90°,AB=20,BC=1,∴AC==16,设HQ=x,∵HQ∥BC,∴=,∴,∴AQ=x,由对折得:∵∴×16×1=9××x×x,∴x=2或﹣2(舍弃),∴HQ=2,故答案为2.(2)如图2中,由翻折不变性可知:AE=EM,AF=FM,∠AFE=∠MFE,∵FM∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=MF=ME,∴四边形AEMF是菱形.(3)如图3中,设AE=EM=FM=AF=2m,则BM=3m,FB=5m,∴2m+5m=20,∴m=,∴AE=EM=,∴EC=AC﹣AE=16﹣=,∴CM=∵QH=2,AQ=,∴QC=,设PQ=x,当=时,,∴解得:,当=时,,∴解得:x=8或,经检验:x=8或是分式方程的解,且符合题意,综上所述,满足条件长QP的值为或8或.【点睛】本题考查的是三角形相似的判定与性质,菱形的判定与性质,轴对称的性质,锐角三角函数的应用,掌握以上知识是解题的关键.22、(1)假;(2)3【分析】(1)判定是真假命题,要看抛物线与坐标轴交点的个数,当有3个交点时是真命题,有两个或一个交点时不能构成三角形.(2)先求抛物线与坐标轴的交点坐标,再求面积即可.【详解】解:(1)假命题.如果抛物线与x坐标轴没有交点时,不能形成三角形.(2)抛物线解析式为与轴交点坐标为,与轴交点坐标为,“抛物线三角形”的面积为【点睛】本题考查了抛物线的性质,再求抛物线与坐标轴的交点组成的三角形的面积.23、(1)x1=1,x2=3;(2)1<x<3;(3)x>2.【分析】(1)利用抛物线与x轴的交点坐标写出方程ax2+bx+c=0的两个根;(2)写出函数图象在x轴上方时所对应的自变量的范围即可;(3)根据函数图象可得答案.【详解】解:(1)由函数图象可得:方程ax2+bx+c=0的两个根为x1=1,x2=3;(2)由函数图象可得:不等式ax2+bx+c>0的解集为:1<x<3;(3)由函数图象可得:当x>2时,y随x的增大而减小.【点睛】本题考查了抛物线与x轴的交点问题、根据函数图象求不等式解集以及二次函数的性质,注意数形结合思想的应用.24、(1);(2)【分析】(1)将1代入原方程,可得关于m的方程,解此方程即可求得答案;(2)利用根与系数的关系列出方程即可求得答案.【详解】(1)方程的根1代入方程得:=0,整理得:=0,∵∴故答案为:(2)方程两个实数根的和为方程两个实数根的积为,依题意得:,即:,分解因式得:解得:或2,当时,原方程为:,方程有实数根;当时,原方程为:,,方程没有实数根,∴不符合题意,舍去;m的值为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论