




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市高邮市汪曾祺学校2023年八年级数学第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.32.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若,则内应填的式子是()A. B. C.3 D.4.下列命题:①有一条直角边和斜边对应相等的两个直角三角形全等;②周长相等的两个三角形是全等三角形③全等三角形对应边上的高、中线、对应角的角平分线相等;其中正确的命题有()A.个 B.个 C.个 D.个5.由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC26.点A(3,3﹣π)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC8.如图,在直角中,,的垂直平分线交于,交于,且BE平分∠ABC,则等于()A. B. C. D.9.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.10.下列各式中,计算正确的是()A. B. C. D.11.下列图形具有稳定性的是()A. B.C. D.12.下列坐标点在第四象限内的是()A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)二、填空题(每题4分,共24分)13.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.14.若分式的值为0,则x=____.15.若多项式x2+pxy+qy2=(x-3y)(x+3y),则P的值为____.16.如图,在△ABC中,∠B=10°,ED垂直平分BC,ED=1.则CE的长为.17.诺如病毒的直径大约0.0000005米,将0.0000005用科学记数法可表示为________18.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为_____cm时,线段CQ+PQ的和为最小.三、解答题(共78分)19.(8分)如图,已知和均是等边三角形,点在上,且.求的度数.20.(8分)在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.(8分)如图,已知:AB∥CD.(1)在图中,用尺规作∠ACD的平分线交AB于E点;(2)判断△ACE的形状,并证明.22.(10分)某校为了解学生对“安全常识”的掌握程度,随机抽取部分学生安全知识竞赛的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.图中A表示“不了解”,B表示“了解很少”、C表示“基本了解”,D表示“非常了解”.请根据统计图所提供的信息解答下列问题:(1)被调查的总人数是人,扇形统计图中A部分所对应的扇形圆心角的度数为度;(2)补全条形统计图;(3)若该校共有学生1500人,请根据上述调查结果,估计该校学生中达到“基本了解”和“非常了解”共有人.23.(10分)计算:﹣(2020﹣π)0+()﹣2﹣.24.(10分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.25.(12分)如图,一块四边形的土地,其中,,,,,求这块土地的面积.26.某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为xkm,通过铁路运输和通过公路运输需交总运费y1元和y2元,(1)求y1和y2关于x的表达式.(2)若A地到B地的路程为120km,哪种运输可以节省总运费?
参考答案一、选择题(每题4分,共48分)1、C【分析】根据完全平方公式可得,,再把两式相加即可求得结果.【详解】解:由题意得,把两式相加可得,则故选C.考点:完全平方公式点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.2、B【分析】根据各象限内点的坐标特征解答.【详解】解:点(﹣2,3)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、A【分析】根据题意得出=,利用分式的性质求解即可.【详解】根据题意得出=故选:A.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质是解题的关键.4、B【分析】逐项对三个命题判断即可求解.【详解】解:①有一条直角边和斜边对应相等的两个直角三角形()全等,故①选项正确;②全等三角形为能够完全重合的三角形,周长相等不一定全等,故②选项错误;③全等三角形的性质为对应边上的高线,中线,角平分线相等,故③选项正确;综上,正确的为①③.故选:B.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理和性质定理是解题关键.5、A【分析】直角三角形的判定:有一个角是直角的三角形,两个锐角互余,满足勾股定理的逆定理。用这三个,便可找到答案.【详解】解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.【点睛】知道直角三角形判定的方法(直角三角形的判定:有一个角是直角的三角形,两个锐角互余,满足勾股定理的逆定理),会在具体当中应用.6、D【解析】由点A中,,可得A点在第四象限【详解】解:∵3>0,3﹣π<0,∴点A(3,3﹣π)所在的象限是第四象限,【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7、D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:【详解】分析:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.故选D.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.8、B【分析】根据线段的垂直平分线的性质得到EB=EA,则∠EBA=∠A,而∠EBA=∠CBE,利用三角形内角和定理即可计算出∠A.【详解】解:∵AB的垂直平分线交AB于D,∴EB=EA,∴∠EBA=∠A,又∵BE平分∠ABC,∴∠EBA=∠CBE,而∠C=90°,∴∠CBA+∠A=90°,∴∠A=30°.故选:B.【点睛】本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了角平分线的定义以及三角形内角和定理.9、D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.10、C【解析】根据平方根、立方根的运算及性质逐个判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误,故答案为:C.【点睛】本题考查了平方根、立方根的运算及性质,解题的关键是熟记运算性质.11、A【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.
故选:A.【点睛】本题考查了三角形的稳定性和四边形的不稳定性.12、D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得在第四象限内的是(1,-2),故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题的关键.二、填空题(每题4分,共24分)13、36°【分析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.14、1【分析】根据分式的值为零的条件得到x-1=0且x≠0,易得x=1.【详解】∵分式的值为0,∴x−1=0且x≠0,∴x=1.故答案为1.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.15、1【分析】根据平方差公式,可得相等的整式,根据相等整式中相同项的系数相等,可得答案.【详解】解:由x2+pxy+qy2=(x-3y)(x+3y)得,x2+pxy+qy2=(x-3y)(x+3y)=x2-9y2,p=1,q=-9,故答案为:1.【点睛】本题考查了平方差公式,利用平方差公式得出相等的整式是解题关键.16、4【解析】试题分析:因为ED垂直平分BC,所以BE=CE,在Rt△BDE中,因为∠B=30°,ED=3,所以BE=4DE=4,所以CE=BE=4.考点:3.线段的垂直平分线的性质;4.直角三角形的性质.17、5×10-7【解析】试题解析:0.0000005=5×10-718、1.【分析】连接AQ,依据等边三角形的性质,即可得到CQ=AQ,依据当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,即可得到BP的长.【详解】如图,连接AQ,∵等边△ABC中,BD为AC边上的中线,∴BD垂直平分AC,∴CQ=AQ,∴CQ+PQ=AQ+PQ,∴当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,此时,P为BC的中点,又∵等边△ABC的周长为18cm,∴BP=BC=×6=1cm,故答案为1.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(共78分)19、【分析】根据等边三角形的性质可证明△ABD≌△ACE,根据全等三角形的性质得到BD=CE,∠ACE=∠B=60°,进而得到DC=CE,∠DCE=120°,根据等腰三角形的性质以及三角形内角和定理即可得出结论.【详解】∵与均是等边三角形,∴,,,∴,∴,∴,,∴,,∴.【点睛】本题考查了等边三角形的性质以及等腰三角形的判定.证明三角形△ABD≌△ACE是解答本题的关键.20、(1)S=4﹣m,0<m<4;(2)(1,);(3)(2,1)【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【详解】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质.21、(1)如图见解析;(2)△ACE是等腰三角形,证明见解析.【分析】(1)根据角平分线的作法,用尺规作图;(2)根据平行线性质和角平分线定义,可得∠ACE=∠AEC.【详解】(1)解:如图即为所求.(2)△ACE是等腰三角形.证明:,∥∴∠ECD=∠AEC,∴∠ACE=∠AEC,△ACE是等腰三角形.【点睛】本题考核知识点:角平分线,平行线.解题关键点:理解角平分线定义和平行线性质.22、(1)50,36;(2)见解析;(3)1【分析】(1)根据“A组人数÷A组的百分比=总人数”,“360°×A组的百分比=A部分所对应的扇形圆心角的度数”,即可求解;(2)求出B组人数,再补全条形统计图,即可;(3)根据学校总人数×C、D两组人数的百分比之和=该校学生中达到“基本了解”和“非常了解”的认识,即可求解.【详解】(1)5÷10%=50(人),360°×10%=36°,故答案为:50,36;(2)50﹣5﹣30﹣5=10(人),补全条形统计图如图所示:(3)1500×=1(人),故答案为:1.【点睛】本题主要考查扇形统计图和条形统计图的相关信息,掌握扇形统计图和条形统计图的特征,是解题的关键.23、1.【分析】分别根据零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义计算每一项,再合并即可.【详解】解:﹣(2121﹣π)1+()﹣2﹣=﹣1+4﹣6﹣(﹣3)=1.【点睛】本题考查了零指数幂的意义、负整数指数幂的运算法则、算术平方根和立方根的定义等知识,属于基本题型,熟练掌握基本知识是解题关键.24、(1)见解析;(2)∠BDF=18°.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏安全技术职业学院《电影文学与电影分析》2023-2024学年第二学期期末试卷
- 五邑大学《语言专业第二外语法语》2023-2024学年第一学期期末试卷
- 四川省广元市2025届三下数学期末联考模拟试题含解析
- 配送网络优化与物流成本-全面剖析
- 项目经理入职合同范本
- 社区服务供需分析-全面剖析
- 2024年中国工商银行山西太原支行春季校招笔试题带答案
- 融合蛋白药物开发-全面剖析
- 三方办公楼租赁协议合同范本
- 活动策划服务合同
- GB/T 17213.4-2015工业过程控制阀第4部分:检验和例行试验
- 《课程与教学论》形考二答案
- 公积金提取单身声明
- 磷酸铁锂生产配方及工艺
- 高处作业吊篮进场验收表
- 电工电子技术及应用全套课件
- DB33T 1233-2021 基坑工程地下连续墙技术规程
- 8.生发项目ppt课件(66页PPT)
- 《新农技推广法解读》ppt课件
- 车载式轮椅升降装置的结构设计-毕业设计说明书
- 社区家庭病床护理记录文本汇总
评论
0/150
提交评论