版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西南昌石埠中学2023年数学九上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.是四边形的外接圆,平分,则正确结论是()A. B. C. D.2.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A.(﹣2,﹣3) B.(﹣3,﹣2) C.(﹣3,﹣1) D.(﹣2,﹣1)3.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,()A.30° B.70° C.30°或60° D.40°或70°4.若点是直线上一点,已知,则的最小值是()A.4 B. C. D.25.二次函数图象的一部分如图所示,顶点坐标为,与轴的一个交点的坐标为(-3,0),给出以下结论:①;②;③若、为函数图象上的两点,则;④当时方程有实数根,则的取值范围是.其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个6.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)(
)A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里7.已知(,),下列变形错误的是()A. B. C. D.8.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米 B.15米 C.25米 D.30米9.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40° B.60° C.80° D.100°10.如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的正半轴上,点F在BA上,点B、E均在反比例函数y=(k≠0)的图象上,若点B的坐标为(1,6),则正方形ADEF的边长为()A.1 B.2 C.4 D.611.如图,正方形的面积为16,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为()A.2 B.4 C.6 D.812.如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.已知,P为等边三角形ABC内一点,PA=3,PB=4,PC=5,则S△ABC=_____.14.如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为___.15.如图,将二次函数y=(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.16.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,若∠CDB=30°,⊙O的半径为5cm则圆心O到弦CD的距离为_____.18.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.三、解答题(共78分)19.(8分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.20.(8分)(1)解方程:(2)已知点P(a+b,-1)与点Q(-5,a-b)关于原点对称,求a,b的值.21.(8分)解方程:(1)x2﹣4x﹣1=0;(2)5x(x﹣1)=x﹣1.22.(10分)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?23.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”活动.经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,最终没有学生得分低于25分,也没有学生得满分.根据测试成绩绘制出频数分布表和频数分布直方图(如图).请结合图标完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若本次决赛的前5名是3名女生A、B、C和2名男生M、N,若从3名女生和2名男生中分别抽取1人参加市里的比赛,试用列表法或画树状图的方法求出恰好抽到女生A和男生M的概率.24.(10分)如图,AB是⊙O的一条弦,点C是半径OA的中点,过点C作OA的垂线交AB于点E,且与BE的垂直平分线交于点D,连接BD.(1)求证:BD是⊙O的切线;(2)若⊙O的半径为2,CE=1,试求BD的长.25.(12分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?26.四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?
参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆心角、弧、弦的关系对结论进行逐一判断即可.【详解】解:与的大小关系不确定,与不一定相等,故选项A错误;平分,,,故选项B正确;与的大小关系不确定,与不一定相等,选项C错误;∵与的大小关系不确定,选项D错误;故选B.【点睛】本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.2、A【详解】解:∵线段AB的两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(-2,-3).故选A.3、C【分析】根据是等腰三角形,进行分类讨论【详解】是菱形,,不符合题意所以选C4、B【分析】根据题意先确定点B在哪个位置时的最小值,先作点A关于直线CD的对称点E,点B、E、O三点在一条直线上,再根据题意,连结OE与CD的交点就是点B,求出OE的长即为所求.【详解】解:在y=-x+2中,当x=0时,y=2,当y=0时,0=-x+2,解得x=2,
∴直线y=-x+2与x的交点为C(2.0),与y轴的交点为D(0,2),如图,∴OC=OD=2,∵OC⊥OD,:OC⊥OD,∴△OCD是等腰直角三角形,
∴∠OCD=45°,∴A(0,-2),∴OA=OC=2
连接AC,如图,
∵OA⊥OC,
∴△OCA是等腰直角三角形,
∴∠OCA=45°,
∴∠ACD=∠OCA+∠OCD=90°,
∴.AC⊥CD,
延长AC到点E,使CE=AC,连接BE,作EF⊥轴于点F,
则点E与点A关于直线y=-x+2对称,∠EFO=∠AOC=90,
点O、点B、点E三点共线时,OB+AB取最小值,最小值为OE的长,
在△CEF和△CAO中,
∴△CEF≌OCAO(AAS),
∴EF=OA=2,CF=OC=2
∴OF=OC+CF=4,
即OB+AB的最小值为.故选:B【点睛】本题考查的是最短路线问题,找最短路线是解题关键.找一点的对称点连接另一点和对称点与对称轴的交点就是B点.5、D【分析】由二次函数的图象可知,再根据对称轴为x=-1,得出b=2a<0,进而判断①,当x=-2时可判断②正确,然后根据抛物线的对称性以及增减性可判断③,再根据方程的根与抛物线与x交点的关系可判断④.【详解】解:∵抛物线开口向下,交y轴正半轴∴∵抛物线对称轴为x=-1,∴b=2a<0∴①正确;当x=-2时,位于y轴的正半轴故②正确;点的对称点为∵当时,抛物线为增函数,∴③正确;若当时方程有实数根,则需与x轴有交点则二次函数向下平移的距离即为t的取值范围,则的取值范围是,④正确.故选:D.【点睛】本题考查的知识点是二次函数图象及其性质,熟悉二次函数的图象上点的坐标特征以及求顶点坐标的公式是解此题额关键.6、B【解析】根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE=
x,AB=BE=CE=2x,由AC=AD+DE+EC=2
x+2x=30,解之即可得出答案.【详解】根据题意画出图如图所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
设BD=x,
在Rt△ABD中,
∴AD=DE=
x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2
x+2x=30,
∴x=
=
≈5.49,
故答案选:B.【点睛】考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.7、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C.由等式性质可得:3b=4a,正确;D.由等式性质可得:4a=3b,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.8、B【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.【详解】解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.【点睛】本题主要利用定理--在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.9、C【分析】利用圆周角与圆心角的关系得出∠COB=40°,再根据垂径定理进一步可得出∠DOB=∠COB,最后即可得出答案.【详解】∵∠A=20°,∴∠COB=2∠A=40°,∵CD⊥AB,OC=OD,∴∠DOB=∠COB=40°,∴∠COD=∠DOB+∠COB=80°.故选:C.【点睛】本题主要考查了圆周角、圆心角与垂径定理的综合运用,熟练掌握相关概念是解题关键.10、B【分析】由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.【详解】∵点B的坐标为(1,1),反比例函数y的图象过点B,∴k=1×1=1.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a).∵反比例函数y的图象过点E,∴a(1+a)=1,解得:a=2或a=﹣3(舍去),∴正方形ADEF的边长为2.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征、矩形的性质以及正方形的性质,根据反比例函数图象上点的坐标特征得出关于a的一元二次方程是解答本题的关键.11、B【分析】由于点B与点D关于AC对称,所以连接BE,与AC的交点即为F,此时,FD+FE=BE最小,而BE是等边三角形ABE的边,BE=AB,由正方形面积可得AB的长,从而得出结果.【详解】解:由题意可知当点P位于BE与AC的交点时,有最小值.设BE与AC的交点为F,连接BD,∵点B与点D关于AC对称∴FD=FB∴FD+FE=FB+FE=BE最小又∵正方形ABCD的面积为16∴AB=1∵△ABE是等边三角形∴BE=AB=1.故选:B.【点睛】本题考查的知识点是轴对称中的最短路线问题,解题的关键是弄清题意,找出相对应的相等线段.12、C【解析】通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,用含x的式子表示的BE、EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论.【详解】①∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵△AEF等边三角形,∴AE=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴AC是EF的垂直平分线,∴AC平分∠EAF,∴∠EAC=∠FAC=×60°=30°,∵∠BAC=∠DAC=45°,∴∠BAE=∠DAF=15°,故①正确;②设EC=x,则FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60°=EFsin60°=2×CGsin60°=2×CG,∴AG=CG,故②正确;③由②知:设EC=x,EF=x,AC=CG+AG=CG+CG=,∴AB==,∴BE=AB﹣CE=﹣x=,∴BE+DF=2×=(﹣1)x≠x,故③错误;④S△CEF=,S△ABE=BE•AB=,∴S△CEF=2S△ABE,故④正确,所以本题正确的个数有3个,分别是①②④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(每题4分,共24分)13、【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在Rt△APF中利用三角函数求得AF和PF的长,则在Rt△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.【详解】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面积=AB2=(25+12)=;故答案为:.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的判定与性质以及勾股定理的逆定理.14、【详解】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为.【点睛】本题考查相似三角形的判定与性质;矩形的性质.15、y=0.2(x-2)+2【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=1,∴A(1,1),B(4,1),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=1.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=1AA′=12,∴AA′=4,即将函数y=(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+2.故答案为y=0.2(x﹣2)2+2.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.16、3【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案为3.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.17、2.5cm.【分析】根据圆周角定理得到∠COB=2∠CDB=60°,然后根据含30度的直角三角形三边的关系求出OE即可.【详解】∵CD⊥AB,∴∠OEC=90°,∵∠COB=2∠CDB=2×30°=60°,∴OE=OC=×5=2.5,即圆心O到弦CD的距离为2.5cm.故答案为2.5cm.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18、【分析】将点(1,3)代入y即可求出k+1的值,再根据k+1=xy解答即可.【详解】∵反比例函数的图象上有一点(1,3),∴k+1=1×3=6,又点(-3,n)在反比例函数的图象上,∴6=-3×n,解得:n=-1.故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.三、解答题(共78分)19、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)【分析】(1)c=1,点B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得a=﹣1即可得出答案;(2)由S△COF:S△CDF=1:2得OF:FD=1:2,由DH∥CO得CO:DM=1:2,求得DM=2,而DM==2,即可求解;(1)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.【详解】(1)∵OB=OC=1,∴点C的坐标为C(0,1),c=1,点B的坐标为B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴于点H,交BC于点M,∵S△COF:S△CDF=1:2,∴OF:FD=1:2,∵DH∥CO,∴CO:DM=OF:FD=1:2,∴DM=CO=2,设直线BC的表达式为:,将C(0,1),B(1,0)代入得,解得:,∴直线BC的表达式为:y=﹣x+1,设点D的坐标为(x,﹣x2+2x+1),则点M(x,﹣x+1),∴DM==2,解得:x=1或2,故点D的坐标为:(1,4)或(2,1);(1)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,如图,∵点E的坐标为(0,),∴OE=,∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,∴GH=GO=OE=,BH=BO=1,设MH=x,则MG=,在△OBM中,OB2+OM2=MB2,即,解得:x=2,故MG==,则OM=MG+GO=+,点M的坐标为(0,4),设直线BM的表达式为:,将点B(1,0)、M(0,4)代入得:,解得:,∴直线BM的表达式为:y=x+4,解方程组解得:x=1(舍去)或,将x=代入y=x+4得y=,故点P的坐标为(,);②当点P在x轴下方时,如图,过点E作EN⊥BP,直线PB交y轴于点M,∵∠OBP=2∠OBE,∴BE是∠OBP的平分线,∴EN=OE=,BN=OB=1,设MN=x,则ME=,在△OBM中,OB2+OM2=MB2,即,解得:,∴,则OM=ME+EO=+,点M的坐标为(0,-4),设直线BM的表达式为:,将点B(1,0)、M(0,-4)代入得:,解得:,∴直线BM的表达式为:,解方程组解得:x=1(舍去)或,将x=代入得,故点P的坐标为(,);综上,点P的坐标为:(,)或(,).【点睛】本题考查的是二次函数的综合运用,涉及到一次函数、平行线分线段成比例定理、勾股定理、角平分线的性质等,其中第(1)问要注意分类求解,避免遗漏.20、(1);(2).【分析】(1)利用因式分解法解一元二次方程即可得;(2)先根据关于原点对称的点坐标变换规律可得一个关于a、b二元一次方程组,再利用加减消元法解方程组即可得.【详解】(1),,或,或,即;(2)关于原点对称的点坐标变换规律:横、纵坐标均互为相反数,则,解得.【点睛】本题考查了解一元二次方程、关于原点对称的点坐标变换规律、解二元一次方程组,熟练掌握方程(组)的解法和关于原点对称的点坐标变换规律是解题关键.21、(1)x1=2+,x2=2﹣;(2)x1=1,x2=0.2【分析】(1)利用配方法求解,可得答案;(2)利用因式分解法求解,可得答案.【详解】(1)∵x2﹣4x=1,∴x2﹣4x+4=1+4,即(x﹣2)2=7,则x﹣2=±,解得:x1=2+,x2=2﹣;(2)∵5x(x﹣1)﹣(x﹣1)=0,∴(x﹣1)(5x﹣1)=0,则x﹣1=0或5x﹣1=0,解得:x1=1,x2=0.2.【点睛】本题主要考查一元二次方程的解法,掌握配方法和因式分解法解方程,是解题的关键.22、渔船没有进入养殖场的危险.【解析】试题分析:点B作BM⊥AH于M,过点C作CN⊥AH于N,利用直角三角形的性质求得CK的长,若CK>4.8则没有进入养殖场的危险,否则有危险.试题解析:过点B作BM⊥AH于M,∴BM∥AF.∴∠ABM=∠BAF=30°.在△BAM中,AM=AB=5,BM=.过点C作CN⊥AH于N,交BD于K.在Rt△BCK中,∠CBK=90°-60°=30°设CK=,则BK=在Rt△ACN中,∵∠CAN=90°-45°=45°,∴AN=NC.∴AM+MN=CK+KN.又NM=BK,BM=KN.∴.解得∵5海里>4.8海里,∴渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场危险.23、(1)16;(2)见解析;(3)图见解析,【解析】(1)利用总数50减去其它项的频数即可求得结果;(2)根据第三组,第四组的人数,画出直方图即可;(3)利用树状图方表示出所有可能的结果,然后利用概率公式即可求解.【详解】(1)由频数分布表可得:a=50−4−6−14−10=16;(2)频数分布直方图如图所示:(3)根据题意画树状图如下:从上图可知共有6种等可能情况,其中抽到女生A和男生M的情况有1种,所以恰好抽到女生A和男生M的概率.【点睛】本题考查树状图法求概率、读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业技术智能监控系统布设协议2024版B版
- 个性化2024版动力煤托盘协议示例版
- 专业教师2024年度聘用协议范例版B版
- 阅读理解技巧讲座
- 二零二四年云服务租赁协议
- 2025年度科技园区场地无偿使用及知识产权共享协议4篇
- 2025年度叉车维修及配件供应一体化服务合同4篇
- 2025年度场岗位员工保密协议执行细则4篇
- 专属委托销售代表协议样式(2024)版A版
- 2025年度影视基地场地租赁合同24篇
- Unit 3 We should obey the rules. Lesson15(说课稿)-2023-2024学年人教精通版英语五年级下册
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)语文试卷(含答案)
- 2024年聊城市东昌府区中医院招聘备案制工作人员考试真题
- 2025年极兔速递有限公司招聘笔试参考题库含答案解析
- 一般固废处理流程
- 《健康体检知识》课件
- 《AIGC应用实战(慕课版)》-课程标准
- 政府机关办公用品配送方案
- 生产计划主管述职报告
- 永威置业项目交付前风险排查表
- 《储能材料与器件》课程教学大纲(新能源材料与器件专业)
评论
0/150
提交评论