




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
23.2中心对称观察下面的图形,你有什么发现?观察下面的几个图形你有什么发现?(1)(2)(3)(4)旋转图形(1)旋转图形(2)旋转图形(3)旋转图形(4)情景引入:(1)下面这些图形有什么共同的特征?(2)你能将这些图形绕其上的一点旋转
1800,使旋转前后的图形完全重合吗?返回
重复返回
重复返回
旋转返回
旋转返回
旋转返回
旋转中心对称:在平面内,一个图形绕某个点旋转1800,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。(1)把其中一个图案绕点O旋转180°,你有什么发现?观察(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°,你有什么发现?OCB(2)重合重合
(1)将等边三角形ABC绕中心O逆时针旋转180°,这两个图形有怎样的位置关系?
新课导入观察ABCOB′C′轴对称A′概念把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,也称这两个图形成中心对称ABCA’C’B’O这个点叫作对称中心2个图形中的对应点叫做对称点
(2)将等腰梯形ABCD绕中心O逆时针旋转180°,这两个图形有怎样的位置关系?ADBCOA′B′C′D′轴对称
(3)将圆O绕圆心O顺时针旋转180°,这两个图形有怎样的位置关系?O重合
(4)将平行四边形ABCD绕中心O逆时针旋转180°,这两个图形有怎样的位置关系?ABCDOA′B′C′D′重合
绕中心旋转180°,旋转后的图形与原图的位置关系有什么不同?
有的轴对称,有的重合。它是轴对称图形吗?
这个图形是否能够通过某种图形运动与自身重合?不是轴对称图形。
下列图形是否能够通过某种图形运动与自身重合?探究线段绕中点旋转180°旋转后与原图重合图形绕中心旋转180°旋转后与原图重合
把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(centralsymmetry),这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。知识要点
对图称
形性轴对称图形中心对称图形图形对称轴条数图形对称中心线段2条中点角1条等腰三角形1条等边三角形3条平行四边形对角线交点矩形2条
对角线交点菱形2条对角线交点正方形4条对角线交点轴对称图形与中心对称图形的比较OBACD对称中心是______,点O点A的对称点是______,点D的对称点是______,点C点B小练习旋转三角板,画关于点O对称的两个三角形。第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′;第三步,移开三角板.探究下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?A′B′C′ABCO
(1)OA=OA′、OB=OB′、OC=OC′(2)△ABC≌△A′B′C′你能证明吗?证明:(1)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点。同理,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点。
求证:(1)OA=OA′、OB=OB′、OC=OC′证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′求证:(2)△ABC≌△A′B′C′1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
2.关于中心对称的两个图形是全等图形。知识要点ABCDFEO
点O是平行四边形的对称中心,点A、C关于点O对称,有AO=CO,那么OE=OF吗?
对称中心平分连结两个对称点的线段.EF经过点O,分别交AB、CD于E、F。解:∵平行四边形是中心对称图形,O是对称中心.∴点E、F是关于点O的对称点。∴OE=OF。ABCDFEO例题AA′B′BOAOA′1.以点O为对称中心作出点A的对称点A′。2.以点O为对称中心作出线段AB的对称线段A′B′。点A′即为所求的点。线段A′B′即为所求的线段。例题线段的中心对称线段的作法点的中心对称点的作法3.以点O为对称中心,画出与△ABC关于点O对称的△A′B′C′。A′C′B′△A′B′C′即为所求的三角形。三角形的中心对称三角形的作法4.画四边形A′B′C′D′,使它与已知四边形关于O点对称。ABA′C′B′D′DOC四边形A′B′C′D′即为所求的图形。四边形的中心对称四边形的作法5.画一个与已知四边形ABCD中心对称图形。(1)以顶点A为对称中心;(2)以BC边的中点为对称中心。DABCEFGMDABCO.NA′B′C′OABC6.画△A′B′C′,使△A′B′C′和△ABC关于点O成中心对称。△A′B′C′即为所求的三角形。拓展资料广告商标中心对称的应用工艺品(如:地毯、挂毯)车轮齿轮电风扇的扇叶风车1.中心对称与轴对称的区别和联系?轴对称中心对称
课堂小结有一条对称轴——直线图形沿对称轴对折(翻折180°)后重合对称点的连线被对称轴垂直平分有一个对称中心——点图形绕对称中心旋转180°后重合对称点连线经过对称中心,且被对称中心平分2.中心对称的两条基本性质:
(1)关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分。
(2)关于中心对称的两个图形是全等图形及其它们的应用。1.△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法。
作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;
即:△DEF就是所求作的三角
形,如图所示。
随堂练习2.四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答。(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由。(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点。解:作法:(1)延长AD,并且使得DA′=AD(2)同理:BD=B′D,CD=C′D(3)连结A′B′、B′C′、C′D,则四边形A′B′C′D为所求的四边形,如图所示。
答:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D点。(2)A、B、C、D关于中心D的对称点是A′、B′、C′、D′,这里的D′与D重合。3.已知AD是△ABC的中线,画出以点D为对称中心,与△ABD成中心对称的三角形。
解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B点关于中心D的对称点为C(B′)(2)连结A′B′、A′C′。则△A′B′C′为所求作的三角形,如图所示。4.已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称。解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示。(2)同样画出点B和点C的对称点E和F。(3)顺次连结DE、EF、FD。
则△DEF即为所求的三角形。5.已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法)6.在△ABC中,∠C=70°,BC=4,AC=4,现将△ABC沿CB方向平移到△A′B′C′的位置。
(1)若平移的距离为3,求△ABC与△A′B′C′重叠部分的面积。
(2)若平移的距离为x(0≤x≤4),求△ABC与△A′B′C′重叠部分的面积y,写出y与x的关系式。
解:(1)∵CC′=3,CB=4且AC=BC∴BC′=C′D=1∴S△BDC′=×1×1=(2)∵CC′=x,∴BC′=4-x∵AC=BC=4∴DC′=4-x∴S△BDC′=(4-x)(4-x)=7.等边△ABC内有一点O,说明:OA+OB>OC。解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B的位置,则△AOC≌△AO′B。∴AO=AO′,OC=O′B又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′在△BOO′中,OO′+OB>BO′即OA+OB>OC8.矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,求折痕EF的长。解:连接AF,∵点C与点A重合,折痕为EF,即EF垂直平分AC。∴AF=CF,AO=CO,∠FOC=90°,又四边形ABCD为矩形,∠B=90°,AB=CD=3,AD=BC=4设CF=x,则AF=x,BF=4-x,由勾股定理,得∴AC=5,∵∴∴∵∠FOC=90°∴
同理,即23.2.1中心对称一、复习提问:1.什么是轴对称呢?2.关于轴对称的两个图形有哪些性质?
把一个图形沿着某一条直线折叠能与另一个图形完全重合,那么就说这两个图形关于这条直线对称或轴对称.1.两个图形是全等形.2.对称轴是对称点连线的垂直平分线.3.图形的旋转:在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形变换称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角.4.图形的旋转的性质:①、旋转前后的图形全等.②、对应点到旋转中心的距离相等.③、对应点与旋转中心所连线段的夹角等于旋转角.5.图形的旋转的作图:先连结,再作角,最后截取.ADEACB二.新课探究
如果将一个图形绕一点旋转180度得到一个新的图形,这样的两个图形是什么关系呢?你知道吗?可以告诉我吗?(1)把其中一个图案绕点O旋转180°.你有什么发现?
重合重合研究观察(2)线段AC,BD相交于点O,OA=OC,OB=OD.把△OCD绕点O旋转180°.你有什么发现?OAODBC
像这样把一个图形绕着某一点旋转180度,如果它能够和另一个图形重合,那么,我们就说这两个图形关于这个点对称或中心对称,这个点就叫对称中心,这两个图形中的对应点,叫做关于中心的对称点.观察:C、A、E三点的位置关系怎样?线段AC、AE的大小关系呢?ADEACBC、A、E三点在一条直线上或∠CAE=180°.AC=AE1.中心对称的定义:ABC)60°B`A`120°O)60°120°180°C`
180°思考:1.把△ABC绕着O点旋转60°得到的△A`B`C`,这两个三角形成中心对称吗?2.把△ABC绕着O点旋转120°得到的△A`B`C`,这两个三角形成中心对称吗?3.把△ABC绕着O点旋转180°,得到的△A`B`C`,这两个三角形成中心对称吗?不是,因为旋转了60°不是,因为旋转了120°是,因为旋转了180
°问题1.2.与问题3有什么区别和联系呢?ABCABC旋转三角板,画关于点O对称的两个三角形:第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′;A’B’C’OABC第三步,移开三角板.合作探究:合作探究:旋转三角板,画关于点O对称的两个三角形:分别连接AA’,BB’,CC’。点O在线段AA′上吗?如果在,在什么位置?△ABC与△A′B′C′有什么关系?(1)点O是线段AA′的中点
(为什?)(2)△ABC≌△A′B′C′(为什么?)第一步,画出△ABC;第二步,以三角板的一个顶点O为中心,把三角板旋转180°,画出△A′B′C′;OA’B’C’CBA很显然画出的△ABC与△A’B’C’关于点O对称.第三步,移开三角板.(1).
点A′是绕点A旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.
同样地,点O是线段BB′CC′的中点.
(2).在△AOB与△A′OB′中OA=OA′,OB=OB′∠AOB=∠AOB′∴△AOB≌△A′OB′(SAS)∴AB=A′B′同理:BC=B′C′,AC=A′C′∴△ABC≌△A′B′C′(SSS)证明:OA’B’C’CBA下图中△A′B′C′与△ABC关于点O是成中心对称的,你能从图中找到哪些等量关系?A’B’C’ABCO(1)OA=OA′、OB=OB′、OC=OC′(2)△ABC≌△A′B′C′找一找:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,并且被对称中心所平分.(2)关于中心对称的两个图形是全等形。2.归纳:中心对称的性质想一想3.中心对称与轴对称有什么区别?又有什么联系?轴对称中心对称有一条对称轴---直线有一个对称中心—点图形沿对称轴对折(翻折1800)后重合图形绕对称中心旋转1800后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分类比你能得到什么结论?4.中心对称的作图AOA'连结OA,并延长到A',使OA'=OA,例1、(1)已知A点和O点,画出点A关于点O的对称点A'则A'是所求的点例1.(2)、已知线段AB和O点,画出线段AB关于点O的对称线段A'B'OA'B'AB连结AO并延长到A',使OA'=OA,则得A的对称点A'连结BO并延长到B',使OB'=OB,则得B的对称点B'连结A'B',则线段A'B'是所画线段例1(3).如图.选择点O为对称中心,画出与△ABC关于点O对称的△A′B′C′.解:A′C′B′△A′B′C′即为所求的三角形。怎么办?可以帮帮我吗?例1(4)已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于这一点对称。ABA′C′B′D′DOC四边形A1B1C1D1即为所求的图形。画一个与已知四边形ABCD中心对称图形。(1)以顶点A为对称中心;(2)以BC边的中点为对称中心。提高练习DABCEFGMDABCO.N你知道怎么办吗?
如图,已知△ABC与△A’B’C’中心对称,求出它们的对称中心O。ABCA’B’C’应用怎么办?可以帮帮我吗?解法一:根据观察,B、B’应是对应点,连结BB’,用刻度尺找出BB’的中点O,则点O即为所求(如图)ABCA’B’C’OO解法二:根据观察,B、B’及C、C’应是两组对应点,连结BB’、CC’,BB’、CC’相交于点O,则点O即为所求(如图)。ABCA’B’C’练习P70.1.2你学会了吗?
23.1图形的旋转
在平面内,把一个图形绕一个定点,沿某个方向转动一个角度,像这样的图形变换称作旋转这个定点称为旋转中心所转动的角称为旋转角旋转的定义旋转三要素旋转中心、旋转方向、旋转角度1、旋转前后的图形全等2、对应点到旋转中心的距离相等3、对应点与旋转中心连线的夹角
等于旋转角旋转的基本性质二、新课:23.2.1中心对称ABCA’C’B’O一、看看下面的图形旋转ABCA’C’B’OABCA’C’B’OABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东枣庄市薛城区2025届高考第二次模拟考试历史试题理试题含解析
- 2025年江苏省溧中、省扬中、镇江一中、江都中学高三模拟(最后一次)英语试题含解析
- 化疗科普小知识
- 船运渣土施工方案
- 2025年焊工(中级)考试题及答案
- 护士护理查房儿科
- 安全使用布洛芬
- 智能粮仓二五年防鼠防潮安防系统协议
- 德育工作总结汇报2
- 护理医疗操作的不良事件
- 2024年全国高中生物联赛竞赛试题和答案
- 《女职工劳动保护》课件
- 城市河道规划设计方案
- 防爆蓄电池单轨吊机车运行安全技术措施完整版
- 《用户体验测试》课件
- 女生青春期讲座-女生的青春期课件
- 职业病危害告知书
- TRIZ理论――创新方法课件
- CORN术中获得性压力性损伤风险评估量表评定细则解读
- 中国大唐集团公司以热率为核心能耗管理指导意见
- (1.3)-灾害护理学第二章灾害应急体系
评论
0/150
提交评论