江西省南昌市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
江西省南昌市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
江西省南昌市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
江西省南昌市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
江西省南昌市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省南昌市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,当刻度尺的一边与⊙O相切时,另一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为()A.cm B.4cm C.3cm D.2cm2.在Rt△ABC中,∠C=90°,各边都扩大2倍,则锐角A的锐角三角函数值()A.扩大2倍 B.缩小 C.不变 D.无法确定3.已知x1,x2是一元二次方程x2+(2m+1)x+m2﹣1=0的两不相等的实数根,且,则m的值是()A.或3 B.﹣3 C. D.4.已知,若,则它们的周长之比是()A.4:9 B.16:81C.9:4 D.2:35.如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA1=1:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A.1:2 B.1:3 C.1:4 D.1:96.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元7.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为()A.60° B.90° C.120° D.150°8.一根水平放置的圆柱形输水管横截面积如图所示,其中有水部分水面宽8米,最深处水深2米,则此输水管道的半径是()A.4米 B.5米 C.6米 D.8米9.如果1是方程的一个根,则方程的另一个根是()A. B.2 C. D.110.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是()A.﹣14 B.﹣17 C.﹣20 D.﹣2311.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:x…04…y…0.37-10.37…则方程ax2+bx+1.37=0的根是()A.0或4 B.或 C.1或5 D.无实根12.将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是()A. B.y=C.y= D.y=二、填空题(每题4分,共24分)13.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.14.已知正方形ABCD边长为4,点P为其所在平面内一点,PD=,∠BPD=90°,则点A到BP的距离等于_____.15.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲的成绩的方差为1.2,乙的成绩的方差为3.9,由此可知_____的成绩更稳定.16.如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为_____.17.如图,,,与交于点,则是相似三角形共有__________对.18.一块含有角的直角三角板按如图所示的方式放置,若顶点的坐标为,直角顶点的坐标为,则点的坐标为______.三、解答题(共78分)19.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.20.(8分)在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.21.(8分)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.22.(10分)如图所示,在中,于点E,于点F,延长AE至点G,使EG=AE,连接CG.(1)求证:;(2)求证:四边形EGCF是矩形.23.(10分)综合与实践:如图,已知中,.(1)实践与操作:作的外接圆,连结,并在图中标明相应字母;(尺规作图,保留作图痕迹,不写作法)(2)猜想与证明:若,求扇形的面积.24.(10分)如图,是的直径,点,是上两点,且,连接,,过点作交延长线于点,垂足为.(1)求证:是的切线;(2)若,求的半径.25.(12分)数学概念若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.理解概念(1)若点是的等角点,且,则的度数是.(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)①如图①,②如图②,深入思考(3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有.(填序号)26.如图,一条公路的转弯处是一段圆弧.用直尺和圆规作出所在圆的圆心O(要求保留作图痕迹,不写作法);

参考答案一、选择题(每题4分,共48分)1、D【解析】连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=12AB=12(9−1)=4cm,∵OA=5,则OD=5−DE,在Rt△OAD中,,即解得DE=2cm.故选D.2、C【解析】∵在Rt△ABC中,∠C=90°,∴,,,∴在Rt△ABC中,各边都扩大2倍得:,,,故在Rt△ABC中,各边都扩大2倍,则锐角A的锐角三角函数值不变.故选C.【点睛】本题考查了锐角三角函数,根据锐角三角函数的概念:锐角A的各个三角函数值等于直角三角形的边的比值可知,三角形的各边都扩大(缩小)多少倍,锐角A的三角函数值是不会变的.3、C【分析】先利用判别式的意义得到m>-,再根据根与系数的关系的x1+x2=-(2m+1),x1x2=m2-1,则(x1+x2)2-x1x2-17=0,所以(2m+1)2-(m2-1)-17=0,然后解关于m的方程,最后确定满足条件的m的值.【详解】解:根据题意得△=(2m+1)2﹣4(m2﹣1)>0,解得m>﹣,根据根与系数的关系的x1+x2=﹣(2m+1),x1x2=m2﹣1,∵,∴(x1+x2)2﹣x1x2﹣17=0,∴(2m+1)2﹣(m2﹣1)﹣17=0,整理得3m2+4m﹣15=0,解得m1=,m2=﹣3,∵m>﹣,∴m的值为.故选:C.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了根的判别式.4、A【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,AC:DF=4:9,

∴△ABC与△DEF的相似比为4:9,

∴△ABC与△DEF的周长之比为4:9,

故选:A.【点睛】此题考查相似三角形性质,掌握相似三角形周长的比等于相似比是解题的关键.5、D【分析】由点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案.【详解】∵点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,∴五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,∴五边形ABCDE和五边形A1B1C1D1E1的面积比是1:1.故选:D.【点睛】此题考查了位似图形的性质.此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方.6、A【解析】.所以4月份营业额约为3×30=90(万元).7、C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,

∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:解得:n=1.

故选:C.【点睛】此题主要考查了圆锥侧面积公式的应用以及与展开图各部分对应情况,得出圆锥侧面展开图等于扇形面积是解决问题的关键.8、B【详解】解:∵OC⊥AB,AB=8米,∴AD=BD=4米,设输水管的半径是r,则OD=r﹣2,在Rt△AOD中,∵OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=1.故选B.【点睛】本题考查垂径定理的应用;勾股定理.9、A【分析】利用方程解的定义找到相等关系,将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出方程的另一根.【详解】设方程的另一根为.又解得:故选A.【点睛】本题考查根与系数的关系,解题突破口是将1代入两根之积公式和两根之和公式列出方程组.10、A【解析】根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.【详解】不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,分式方程去分母得:12﹣ax=2x+4,解得:x=,∵分式方程有整数解且a是整数∴a+2=±1、±2、±4、±8,即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,又∵x=≠﹣2,∴a≠﹣6,由a<﹣3得:a=﹣10或﹣4,∴所有满足条件的a的和是﹣14,故选:A.【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.11、B【分析】利用抛物线经过点(0,0.37)得到c=0.37,根据抛物线的对称性得到抛物线的对称轴为直线x=2,抛物线经过点,由于方程ax2+bx+1.37=0变形为ax2+bx+0.37=-1,则方程ax2+bx+1.37=0的根理解为函数值为-1所对应的自变量的值,所以方程ax2+bx+1.37=0的根为.【详解】解:由抛物线经过点(0,0.37)得到c=0.37,

因为抛物线经过点(0,0.37)、(4,0.37),

所以抛物线的对称轴为直线x=2,

而抛物线经过点所以抛物线经过点方程ax2+bx+1.37=0变形为ax2+bx+0.37=-1,

所以方程ax2+bx+0.37=-1的根理解为函数值为-1所对应的自变量的值,

所以方程ax2+bx+1.37=0的根为.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】解:将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是:.故答案为A.【点睛】本题考查了二次函数图像的平移法则,即掌握“左加右减,上加下减”是解答本题的关键.二、填空题(每题4分,共24分)13、【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=×BC×AD=×AC×BM,∴BM=,即CF+EF的最小值是,故答案为:.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.14、或【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】∵点P满足PD=,∴点P在以D为圆心,为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=4,∵∠BPD=90°,∴BP==3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3﹣AH)2,∴AH=(不合题意),或AH=,若点P在CD的右侧,同理可得AH=,综上所述:AH=或.【点睛】本题是正方形与圆的综合题,正确确定点P是以D为圆心,为半径的圆和以BD为直径的圆的交点是解决问题的关键.15、甲【分析】根据方差的定义,方差越小数据越稳定.【详解】解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.故答案为甲;【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16、.【分析】由矩形的性质可得AO=CO=BO=DO,可证△ABE≌△AOE,可得AO=AB=BO=DO,由勾股定理可求AB的长.【详解】解:∵四边形是矩形∴,∵平分∴,且,,∴≌()∴,且∴,∴,∵,∴,∴故答案为.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,熟练运用矩形的性质是本题的关键.17、6【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中组合,据此可得出答案.【详解】图中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6个组合分别为:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.18、【分析】过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△CAO,设点B坐标为(x,y),根据相似三角形的性质即可求解.【详解】过点B作BD⊥OD于点D,∵△ABC为直角三角形,∴,∴△BCD∽△CAO,∴,设点B坐标为(x,y),则,,∴=AC=2,∵有图知,,∴,解得:,则y=3.即点B的坐标为.故答案为【点睛】本题考查了坐标与图形性质、相似三角形的判定及性质、特殊角的三角函数值,解题的关键是要求出BC和AC的值和30度角的三角函数联系起来,作辅助线构造直角三角形为三角函数作铺垫.三、解答题(共78分)19、(1)60,90;(2)见解析;(3)300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.20、(2)m="2,A(-2,0);"(2)①,②点E′的坐标是(2,2),③点E′的坐标是(,2).【分析】试题分析:(2)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2当n=2时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′="BE"=2.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(2)由题意可知4m=4,m=2.∴二次函数的解析式为.∴点A的坐标为(-2,0).(2)①∵点E(0,2),由题意可知,.解得.∴AA′=.②如图,连接EE′.由题设知AA′=n(0<n<2),则A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+3.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=2.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–2)2+4.当n=2时,A′B2+BE′2可以取得最小值,此时点E′的坐标是(2,2).③如图,过点A作AB′⊥x轴,并使AB′=BE=2.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴,∴AA′=∴EE′=AA′=,∴点E′的坐标是(,2).考点:2.二次函数综合题;2.平移.【详解】21、AP=10﹣5.【分析】先根据题意判断出△O′PB是等腰直角三角形,由勾股定理求出PB的长,进而可得出AP的长.【详解】解:连接PO´∵∠OBA′=45°,O′P=O′B,∴∠O´PB=∠O´BP=45°,∠PO´B=90°∴△O′PB是等腰直角三角形,∵AB=10,∴O′P=O′B=5,∴PB==BO′=5,∴AP=AB﹣BP=10﹣5.【点睛】本题考查了旋转的性质、勾股定理、等腰直角三角形的判定,根据旋转性质判定出△O′PB是等腰直角三角形解题的关键.22、(1)见解析;(2)见解析.【分析】(1)根据平行四边形的性质可得,进而可得,由,得,由AAS证明即可;(2)由(1)全等三角形的性质得AE=CF,证出EG=CF,则四边形EGCF是平行四边形,由,即可得证.【详解】证明:(1)∵四边形ABCD是平行四边形,∴,∴,∵于点E,于点F,∴,,在和中,,∴;(2)由(1)得:,,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,又∵,∴四边形EGCF是矩形.【点睛】本题主要考查平行四边形的性质、全等三角形的判定及矩形的判定,关键是根据平行四边形的性质得到三角形全等的条件,然后由三角形全等的性质得到边的等量关系,进而根据有一个角为直角的平行四边形是矩形来判定即可.23、(1)答案见解析;(2)【分析】(1)直角三角形外接圆的圆心在斜边中点,做出AB的垂直平分线找到斜边中点O,然后连接OC即可;(2)根据同弧所对的圆周角是圆心角的一半求出圆心角的度数,然后利用扇形面积公式进行求解.【详解】解:(1)如图所示:外接圆与线段为所求.【点睛】本题考查尺规作图和扇形面积的求法,掌握直角三角形外接圆的圆心是斜边中点,从而做出斜边的垂直平分线,熟记扇形面积公式并正确计算是本题的解题关键.24、(1)见解析;(2)圆O的半径为1【分析】(1)连结OC,由根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;(2)连结BC,由AB为直径得∠ACB=90°,由得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得,在Rt△ACB中,利用含30度的直角三角形三边的关系得AB=2BC=1,从而求出⊙O的半径.【详解】解:(1)证明:连结OC,如图∵弧FC=弧BC∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,∴0C//AF,∵CD⊥AF,∴0C⊥CD,∴CD是圆O的切线;(2)连结BC,如图,∵AB为直径,∴∠ACB=90°,∵,∴∠BOC=×110°=60°,∴∠BAC=30˚,∴∠DAC=30˚,在RtΔADC中,CD=,∴AC=2CD=,在RtΔACB中,BC=AC==1,∴AB=2BC=16,∴圆O的半径为1.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.25、(1)100、130或1;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i)若=时,∴==100°(ii)若时,∴(360°-)=130°;(iii)若=时,360°--=1°,综上所述:=100°、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论