




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
景德镇市重点中学2023年九年级数学第一学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上2.设计一个摸球游戏,先在一个不透明的盒子中放入个白球,如果希望从中任意摸出个球是白球的概率为,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)()A. B. C. D.3.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的最大整数是()A.1 B.0 C.﹣1 D.﹣24.在一个不透明的袋中装有个红、黄、蓝三种颜色的球,除颜色外其他都相同,佳佳和琪琪通过多次摸球试验后发现,摸到红球的频率稳定在左右,则袋中红球大约有()A.个 B.个 C.个 D.个5.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70° B.65° C.55° D.45°6.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是”7.下列运算中正确的是()A.a2÷a=a B.3a2+2a2=5a4C.(ab2)3=ab5 D.(a+b)2=a2+b28.下列函数是二次函数的是().A.y=2x B.y=+xC.y=x+5 D.y=(x+1)(x﹣3)9.二次函数图像的顶点坐标是()A. B. C. D.10.如图,在正方形ABCD中,点E是CD的中点,点F是BC上的一点,且BF=3CF,连接AE、AF、EF,下列结论:①∠DAE=30°,②△ADE∽△ECF,③AE⊥EF,④AE2=AD•AF,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个11.已知反比例函数y=的图象如图所示,则二次函数y=ax2-2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A. B. C. D.12.函数y=ax+b和y=ax2+bx+c(a≠0)在同一个坐标系中的图象可能为()A. B.C. D.二、填空题(每题4分,共24分)13.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,以此类推,为了投资少而获利大,每个遮阳伞每天应提高_______________。14.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).15.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.16.已知,若是一元二次方程的两个实数根,则的值是___________.17.在中,已知cm,cm,P是BC的中点,以点P为圆心,3cm为半径画☉P,则点A与☉P的位置关系是____________.18.如图,在边长为的正方形中,将射线绕点按顺时针方向旋转度,得到射线,点是点关于射线的对称点,则线段长度的最小值为________.三、解答题(共78分)19.(8分)(定义)在平面直角坐标系中,对于函数图象的横宽、纵高给出如下定义:当自变量x在范围内时,函数值y满足.那么我们称b-a为这段函数图象的横宽,称d-c为这段函数图象的纵高.纵高与横宽的比值记为k即:.(示例)如图1,当时;函数值y满足,那么该段函数图象的横宽为2-(-1)=1,纵高为4-1=1.则.(应用)(1)当时,函数的图象横宽为,纵高为;(2)已知反比例函数,当点M(1,4)和点N在该函数图象上,且MN段函数图象的纵高为2时,求k的值.(1)已知二次函数的图象与x轴交于A点,B点.①若m=1,是否存在这样的抛物线段,当()时,函数值满足若存在,请求出这段函数图象的k值;若不存在,请说明理由.②如图2,若点P在直线y=x上运动,以点P为圆心,为半径作圆,当AB段函数图象的k=1时,抛物线顶点恰好落在上,请直接写出此时点P的坐标.20.(8分)如图所示,双曲线与直线(为常数)交于,两点.(1)求双曲线的表达式;(2)根据图象观察,当时,求的取值范围;(3)求的面积.21.(8分)三个小球上分别标有数字﹣2,﹣1,3,它们除数字外其余全部相同,现将它们放在一个不透明的袋子里,从袋子中随机地摸出一球,将球上的数字记录,记为m,然后放回;再随机地摸取一球,将球上的数字记录,记为n,这样确定了点(m,n).(1)请列表或画出树状图,并根据列表或树状图写出点(m,n)所有可能的结果;(2)求点(m,n)在函数y=x的图象上的概率.22.(10分)已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.23.(10分)如图,已知二次函数y=ax1+4ax+c(a≠0)的图象交x轴于A、B两点(A在B的左侧),交y轴于点C.一次函数y=﹣x+b的图象经过点A,与y轴交于点D(0,﹣3),与这个二次函数的图象的另一个交点为E,且AD:DE=3:1.(1)求这个二次函数的表达式;(1)若点M为x轴上一点,求MD+MA的最小值.24.(10分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.25.(12分)如图1,在矩形ABCD中AB=4,BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH,DG分别交AE、CF于点M、Q,BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积。26.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.2、A【分析】利用概率公式,根据白球个数和摸出个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出个球是白球的概率为,∴盒子中球的总数=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.3、B【分析】根据题意知,,代入数据,即可求解.【详解】由题意知:一元二次方程x2+2x+k=1有两个不相等的实数根,∴解得∴.∴k的最大整数是1.故选B.【点睛】本题主要考查了利用一元二次方程根的情况求参数范围,正确掌握利用一元二次方程根的情况求参数范围的方法是解题的关键.4、A【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程求解.【详解】设袋中有红球x个,由题意得解得x=10,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5、C【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,
∴∠C=∠O=55°.
故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.6、D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【详解】解:A错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为.为可能事件.D正确.三角形内角和是180°.故选:D.【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.7、A【分析】根据合并同类项的法则,同底数幂的乘法与除法以,积的乘方和完全平方公式的知识求解即可求得答案.【详解】解:A、,故A选项正确;B、,故B选项错误;C、,故C选项错误;D、,故D选项错误.故选:A.【点睛】本题考查合并同类项的法则,同底数幂的乘法与除法以,积的乘方和完全平方公式等知识,熟练掌握相关运算法则是解题的关键.8、D【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A、y=2x,是一次函数,故此选项错误;B、y=+x,不是整式,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选D.【点睛】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.9、D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵,∴二次函数的顶点坐标为.
故选:D.【点睛】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.10、C【分析】根据题意可得tan∠DAE的值,进而可判断①;设正方形的边长为4a,根据题意用a表示出FC,BF,CE,DE,然后根据相似三角形的判定方法即可对②进行判断;在②的基础上利用相似三角形的性质即得∠DAE=∠FEC,进一步利用正方形的性质即可得到∠DEA+∠FEC=90°,进而可判断③;利用相似三角形的性质即可判断④.【详解】解:∵四边形ABCD是正方形,E为CD中点,∴CE=ED=DC=AD,∴tan∠DAE=,∴∠DAE≠30°,故①错误;设正方形的边长为4a,则FC=a,BF=3a,CE=DE=2a,∴,∴,又∠D=∠C=90°,∴△ADE∽△ECF,故②正确;∵△ADE∽△ECF,∴∠DAE=∠FEC,∵∠DAE+∠DEA=90°∴∠DEA+∠FEC=90°,∴AE⊥EF.故③正确;∵△ADE∽△ECF,∴,∴AE2=AD•AF,故④正确.综上,正确的个数有3个,故选:C.【点睛】本题考查了正方形的性质、锐角三角函数、相似三角形的判定和性质等知识,属于常考题型,熟练掌握正方形的性质和相似三角形的判定和性质是解题的关键.11、C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.12、D【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx+c的图象相比较看是否一致.【详解】解:A.由一次函数的图象可知a>0,b>0,由抛物线图象可知,开口向上,a>0,对称轴x=﹣>0,b<0;两者相矛盾,错误;B.由一次函数的图象可知a>0,b<0,由抛物线图象可知a<0,两者相矛盾,错误;C.由一次函数的图象可知a<0,b>0,由抛物线图象可知a>0,两者相矛盾,错误;D.由一次函数的图象可知a>0,b<0,由抛物线图象可知a>0,对称轴x=﹣>0,b<0;正确.故选D.【点睛】解决此类问题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.二、填空题(每题4分,共24分)13、4元或6元【分析】设每个遮阳伞每天应提高x元,每天获得利润为S,每个每天应收费(10+x)元,每天的租出量为(100-×10=100-5x)个,由此列出函数解析式即可解答.【详解】解:设每个遮阳伞每天应提高x元,每天获得利润为S,由此可得,
S=(10+x)(100-×10),
整理得S=-5x2+50x+1000,
=-5(x-5)2+1125,
因为每天提高2元,则减少10个,所以当提高4元或6元的时候,获利最大,
又因为为了投资少而获利大,因此应提高6元;
故答案为:4元或6元.【点睛】此题考查运用每天的利润=每个每天收费×每天的租出量列出函数解析式,进一步利用题目中实际条件解决问题.14、55【分析】连接OA,OB,根据圆周角定理可得解.【详解】连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°.∴.∴∠C和∠AOB是同弧所对的圆周角和圆心角,∴∠C=∠AOB=55°.15、1【解析】作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y=上,
∴a=1×1=1.故答案是:1.16、6【解析】根据得到a-b=1,由是一元二次方程的两个实数根结合完全平方公式得到,根据根与系数关系得到关于k的方程即可求解.【详解】∵,故a-b=1∵是一元二次方程的两个实数根,∴a+b=-5,ab=k,∴=1即25-4k=1,解得k=6,故填:6.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知因式分解、根与系数的关系运用.17、点A在圆P内【分析】求出AP的长,然后根据点与圆的位置关系判断即可.【详解】∵AB=AC,P是BC的中点,∴AP⊥BC,BP=3cm,∴AP=cm,∵,∴点A在圆P内.故答案为:点A在圆P内.【点睛】本题考查了等腰三角形的性质,勾股定理,点与圆的位置关系,关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.18、【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【详解】如图所示:连接AM.
∵四边形ABCD为正方形,
∴AC=∵点D与点M关于AE对称,
∴AM=AD=1.
∴点M在以A为圆心,以AD长为半径的圆上.
如图所示,当点A、M、C在一条直线上时,CM有最小值.
∴CM的最小值=AC-AM′=-1,
故答案为:-1.【点睛】本题主要考查的是旋转的性质,正方形的性质,依据旋转的性质确定出点M运动的轨迹是解题的关键.三、解答题(共78分)19、(1)2,4;(2),2;(1)①存在,k=1;②或或【分析】(1)当时,函数的函数值y满足从而可以得出横宽和纵高;(2)由题中MN段函数图象的纵高为2,进而进行分类讨论N的y值为2以及6的情况,再根据题中对k值定义的公式进行计算即可;(1)①先求出函数的解析式及对称轴及最大值,根据函数值满足确定b的取值范围,并判断此时函数的增减性,确定两个端点的坐标,代入函数解析式求解即可;②先求出A、B的坐标及顶点坐标,根据k=1求出m的值,分两种情况讨论即可.【详解】(1)当时,函数的函数值y满足,从而可以得出横宽为,纵高为故答案为:2,4;(2)将M(1,4)代入,得n=12,纵高为2,令y=2,得x=6;令y=6,x=2,,.(1)①存在,,解析式可化为,当x=2时,y最大值为4,,解得,当时,图像在对称轴左侧,y随x的增大而增大,当x=a时,y=2a;当x=b时,y=1b,将分别代入函数解析式,解得(舍),(舍),,②,,,理由是:A(0,0),B(4,0),顶点K(2,4m),AB段函数图像的k=1,,m=1或-1,二次函数为或,过顶点K和P点分别作x轴、y轴的垂线,交点为H.i)若二次函数为,如图1,设P的坐标为(x,x),则KH=,PH=,在中,,即解得,ii)若二次函数为,如图2,设P的坐标为(x,x),则,在中,,解得x=-1,【点睛】本题考查的是新定义问题,是中考热门题型,解题关键在于结合抛物线的图像性质、直角三角形的勾股定理以及题中对于k值的定义进行求解.20、(1);(2)或;(3)6.【分析】(1)把点A坐标代入反比例函数解析式即可求得k的值;(2)根据点B在双曲线上可求出a的值,再结合图象确定双曲线在直线上方的部分对应的x的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的△AOC的面积减去△BOC的面积即可求出结果.【详解】解(1):双曲线经过,∴,∴双曲线的解析式为.(2)∵双曲线经过点,∴,解得,∴,根据图象观察,当时,的取值范围是或.(3)设直线的解析式为,∴,解得,∴直线的解析式为,∴直线与轴的交点,∴.【点睛】本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.21、(1)见解析;(2)【分析】(1)根据题意列表,然后写出点(m,n)所有可能的结果即可;(2)点(m,n)所有可能的结果共有9种,符合n=m的有3种,由概率公式即可得出答案.【详解】解:(1)列表如下:点(m,n)所有可能的结果为:(﹣2,﹣2),(﹣1,﹣2),(3,﹣2),(﹣2,﹣1),(﹣1,﹣1),(3,﹣1),(﹣2,3),(﹣1,3)(3,3);(2)点(m,n)所有可能的结果共有9种,符合n=m的有3种:(﹣2,﹣2),(﹣1,﹣1),(3,3),∴点(m,n)在函数y=x的图象上的概率为:.【点睛】本题考查了列表法与树状图法、概率公式以及一次函数的性质等知识;列表得出所有结果是解题的关键.22、(1)m<1;(2)m<0【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;【详解】解:(1)∵二次函数y=x2-2x+m的图象与x轴相交于A、B两点则方程x2-2x+m=0有两个不相等的实数根∴b2-4ac>0,∴4-4m>0,解得:m<1;(2)∵点A、B位于原点的两侧则方程x2-2x+m=0的两根异号,即x1x2<0∵∴m<0【点睛】本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.23、(1);(1).【分析】(1)先把D点坐标代入y=﹣x+b中求得b,则一次函数解析式为y=﹣x﹣3,于是可确定A(﹣6,0),作EF⊥x轴于F,如图,利用平行线分线段成比例求出OF=4,接着利用一次函数解析式确定E点坐标为(4,﹣5),然后利用待定系数法求抛物线解析式;(1)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),利用勾股定理得到AD=3,再证明Rt△AMH∽Rt△ADO,利用相似比得到MH=AM,加上MD=MD′,MD+MA=MD′+MH,利用两点之间线段最短得到当点M、H、D′共线时,MD+MA的值最小,然后证明Rt△DHD′∽Rt△DOA,利用相似比求出D′H即可.【详解】解:(1)把D(0,﹣3)代入y=﹣x+b得b=﹣3,∴一次函数解析式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,则A(﹣6,0),作EF⊥x轴于F,如图,∵OD∥EF,∴==,∴OF=OA=4,∴E点的横坐标为4,当x=4时,y=﹣x﹣3=﹣5,∴E点坐标为(4,﹣5),把A(﹣6,0),E(4,﹣5)代入y=ax1+4ax+c得,解得,∴抛物线解析式为;(1)作MH⊥AD于H,作D点关于x轴的对称点D′,如图,则D′(0,3),在Rt△OAD中,AD==3,∵∠MAH=∠DAO,∴Rt△AMH∽Rt△ADO,∴=,即=,∴MH=AM,∵MD=MD′,∴MD+MA=MD′+MH,当点M、H、D′共线时,MD+MA=MD′+MH=D′H,此时MD+MA的值最小,∵∠D′DH=∠ADO,∴Rt△DHD′∽Rt△DOA,∴=,即=,解得D′H=,∴MD+MA的最小值为.【点睛】此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质、相似三角形的判定与性质及数形结合能力.24、(1)2s(2)①证明见解析,②【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年份第二季度数据资产质押借款保证合同安全审计附件
- 2019-2025年期货从业资格之期货基础知识模考预测题库(夺冠系列)
- 2025租房合同模板CC
- 2025家居定制家具购销合同范本模板
- 2025冰箱供货合同范本
- 2025年中外合作经营合同示范文本
- 2025房屋买卖居间合同范本
- 2025建筑外墙涂料施工及景观绿化不锈钢围栏工程合同
- 养牛入股合同样本
- 机构职能体系 司法责任制
- 四季之美课件77
- 光伏发电站项目安全技术交底资料
- JJF(京) 63-2018 微差压表校准规范
- 富血小板血浆(PRP)临床实践与病例分享课件
- EHS(环境健康安全)管理制度
- GB/T 32124-2024磷石膏的处理处置规范
- 装配钳工试题及答案
- 煤矿安全风险分级管控与隐患排查治理双重预防机制建设指南
- 农业推广学复习要点
- 人员素质测评理论与方法
- 【人教版】《劳动教育》六上 劳动项目六《制造手工肥皂》课件
评论
0/150
提交评论