版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省本溪市2023-2024学年八上数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分2.下列图案中,是轴对称图形的有()个A.1 B.2 C.3 D.43.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.4.甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是8.9环,方差分别是s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,则测试成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,若点G是AE中点且∠AOG=30°,则下列结论正确的个数为()(1)△OGE是等边三角形;(2)DC=3OG;(3)OG=BC;(4)S△AOE=S矩形ABCDA.1个 B.2个 C.3个 D.4个6.在平面直角坐标系中,直线与直线交与点,则关于,的方程组的解为()‘A. B. C. D.7.如图,已知点的坐标为,点的坐标为,点在直线上运动,当最小时,点的坐标为()A. B. C. D.8.如图,中,,,DE是AC边的垂直平分线,则的度数为()A. B. C. D.9.已知则的大小关系是()A. B. C. D.10.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4 B.5 C.6 D.4二、填空题(每小题3分,共24分)11.若在实数范围内有意义,则的取值范围是______.12.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为_____度.13.新定义:[a,b]为一次函数(a≠0,,a、b为实数)的“关联数”.若“关联数”为[3,m-2]的一次函数是正比例函数,则点(1-m,1+m)在第_____象限.14.对于两个非零代数式,定义一种新的运算:x@y=.若x@(x﹣2)=1,则x=____.15.在8×8的格子纸上,1×1小方格的顶点叫做格点.△ABC的三个顶点都是格点(位置如图).若一个格点P使得△PBC与△PAC的面积相等,就称P点为“好点”.那么在这张格子纸上共有_____个“好点”.16.20192﹣2020×2018=_____.17.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是_____.18.如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,−3),B(4,−1).(1)若P(p,0)是x轴上的一个动点,则△PAB的最小周长为___________(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=___________时,四边形ABDC的周长最短;三、解答题(共66分)19.(10分)如图,为的角平分线,于点,于点,连接交于点,.探究:判断的形状,并说明理由;发现:与之间有怎样的数量关系,请直接写出你的结论,不必说明理由.20.(6分)如图,在平面直角坐标系中,,,,动点P从点O出发,以每秒2单位长度的速度沿线段运动;动点Q同时从点O出发,以每秒1单位长度的速度沿线段运动,其中一点先到达终点B时,另一点也随之停止运动,设运动时间为秒.(1)当时,已知PQ的长为,求的值.(2)在整个运动过程中,①设的面积为,求与的函数关系式.②当的面积为18时,直接写出的值.21.(6分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC.(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的?若存在,请求出点N的坐标;若不存在,请说明理由.22.(8分)已知的平方根是,3是的算术平方根,求的立方根.23.(8分)如图,在等腰中,,延长至点,连结,过点作于点,为上一点,,连结,.(1)求证:.(2)若,,求的周长.24.(8分)如图1,等腰直角三角形ABP是由两块完全相同的小直角三角板ABC、EFP(含45°)拼成的,其中△ABC的边BC在直线上,AC⊥BC且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,EF⊥FP且EF=FP.(1)将三角板△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(2)将三角板△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(1)中猜想的关系还成立吗?请写出你的结论(不需证明)25.(10分)如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).26.(10分)在△ABC中,CD⊥AB于点D,DA=DC=4,DB=1,AF⊥BC于点F,交DC于点E.(1)求线段AE的长;(1)若点G是AC的中点,点M是线段CD上一动点,连结GM,过点G作GN⊥GM交直线AB于点N,记△CGM的面积为S1,△AGN的面积为S1.在点M的运动过程中,试探究:S1与S1的数量关系
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【详解】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选C.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、B【分析】根据轴对称图形的概念求解即可.【详解】①不是轴对称图形,故此选项不合题意;
②是轴对称图形,故此选项正确;
③是轴对称图形,故此选项正确;
④不是轴对称图形,故此选项不合题意;是轴对称图形的有2个
故选:B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3、A【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,
∴k<0,
∵一次函数y=x+k的一次项系数大于0,常数项小于0,
∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.
故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).4、A【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,∴S丁2>S丙2>S乙2>S甲2,∴射箭成绩最稳定的是甲;故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、C【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(1)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(2)正确,(3)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【详解】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(1)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(2)正确;∵OG=a,BC=a,∴OG≠BC,故(3)错误;∵S△AOE=a•a=a2,SABCD=3a•a=3a2,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(2)(4),共3个.故选:C.【点睛】本题考查矩形的性质,直角三角形斜边上的中线等于斜边的一半,等边三角形的判定,含30°角的直角三角形.熟练掌握相关定理,并能通过定理推出线段之间的数量关系是解决此题的关键.6、A【分析】直接根据图像及一次函数与二元一次方程组的关系进行求解即可.【详解】解:由直线与直线交与点,可得:,所以;由图像可得:关于,的方程组的解为;故选A.【点睛】本题主要考查一次函数与二元一次方程组,关键是根据题意得到一次函数与二元一次方程组的关系即可.7、A【分析】连接AB,与直线的交点就是点C,此时最小,先求出直线AB的解析式,然后求出点C的坐标即可【详解】解:根据题意,如图,连接AB,与直线的交点就是点C,则此时最小,设点A、B所在的直线为,则,解得:,∴,∴,解得:,∴点C的坐标为:;故选:A.【点睛】本题考查了一次函数的图形和性质,以及最短路径问题,解题的关键是正确确定点C的位置,求出直线AB的解析式,进而求出点C.8、A【分析】由等腰三角形性质,得到,由DE垂直平分AC,得到AE=CE,则,然后求出.【详解】解:∵在中,,,∴,∵DE是AC边的垂直平分线,∴AE=CE,∴,∴;故选择:A.【点睛】本题考查了等腰三角形的性质,垂直平分线性质定理,以及三角形内角和定理,解题的关键是掌握所学性质,正确求出.9、A【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:故选A.【点睛】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.10、A【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.二、填空题(每小题3分,共24分)11、x≤3【分析】根据二次根式有意义的条件解答.【详解】解:根据题意得:3-x≥0,解得:x≤3,故答案为x≤3.【点睛】本题考查二次根式的性质,熟记二次根式有意义被开方数非负是解题关键.12、1【解析】设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形,则这个三角形中最大的角为1度,故答案为:1.13、二.【分析】根据新定义列出一次函数解析式,再根据正比例函数的定义确定m的值,进而确定坐标、确定象限.【详解】解:∵“关联数”为[3,m﹣2]的一次函数是正比例函数,∴y=3x+m﹣2是正比例函数,∴m﹣2=0,解得:m=2,则1﹣m=﹣1,1+m=3,故点(1﹣m,1+m)在第二象限.故答案为:二.【点睛】本题属于新定义和正比例函数的定义,解答的关键运用新定义和正比例函数的概念确定m的值.14、.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【详解】根据题中的新定义化简得:=1,去分母得:x﹣2+x2=x2﹣2x,解得:x=,经检验x=是分式方程的解.故答案为:.【点睛】此题考查解分式方程,解题关键在于利用转化的思想,解分式方程注意要检验.15、1【分析】要使△PBC与△PAC的面积相等,则P点到BC的距离必是P点到AC距离有2倍,通过观察便可确定P的所有位置,从而得出答案.【详解】解:∵AC=1,BC=4,∴当P到BCBC的距离是P点到AC的距离的2倍时,△PBC与△PAC的面积相等,满足这样的条件的P点共有如图所示的1个格点,∴在这张格子纸上共有1个“好点”.故答案为:1.【点睛】本题考查了三角形的面积,识图能力,正确理解新定义,确定P到BC,BC的距离是P点到AC的距离的2倍是解题的关键.16、1【分析】先观察式子,将2020×2018变为(2019+1)×(2019-1),然后利用平方差公式计算即可.【详解】原式=20192﹣(2019+1)×(2019-1)=20192-(20192-1)=20192-20192+1=1故答案为:1.【点睛】本题考查了用平方差公式进行简便计算,熟悉公式特点是解题关键.17、42【详解】解:连接AO,可知AO平分∠BAC,由角平分线的性质可知点O到AB、AC、BC的距离相等,把求△ABC的面积转化为求△AOB、△AOC、△BOC的面积之和,即考点:角平分线的性质.18、【分析】(1)根据题意,设出并找到B(4,-1)关于x轴的对称点是B',其坐标为(4,1),算出AB′+AB进而可得答案;
(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.做点F(1,-1),连接A'F.利用两点间的线段最短,可知四边形ABDC的周长最短等于A'F+CD+AB,从而确定C点的坐标值.【详解】解:(1)设点B(4,-1)关于x轴的对称点是B',可得坐标为(4,1),连接AB′,则此时△PAB的周长最小,∵AB′=,AB=,∴△PAB的周长为,故答案为:;(2)过A点作AE⊥x轴于点E,且延长AE,取A'E=AE.作点F(1,-1),连接A'F.那么A'(2,3).
设直线A'F的解析式为y=kx+b,则,解得:,∴直线A'F的解析式为y=4x-5,
∵C点的坐标为(a,0),且在直线A'F上,∴a=,故答案为:.【点睛】本题考查最短路径问题,同时考查了根据两点坐标求直线解析式,运用解析式求直线与坐标轴的交点等知识.三、解答题(共66分)19、探究:△AEF是等边三角形,理由见解析;发现:DO=AD【分析】(1)根据角平分线的性质得到DE=DF,证明Rt△AED≌Rt△AFD,根据全等三角形的性质得到AE=AF,根据有一个角为60°的等腰三角形是等边三角形即可得出结论;(2)根据等边三角形的性质、30°角所对直角边等于斜边的一半计算即可.【详解】探究:△AEF是等边三角形.理由如下:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°.在Rt△AED和Rt△AFD中,∵,∴Rt△AED≌Rt△AFD(HL),∴AE=AF.∵∠BAC=60°,∴△AEF是等边三角形.发现:DO=AD.理由如下:∵AD为△ABC的角平分线,∠BAC=60°,∴∠EAD=30°,∴DE=AD.∵△AEF是等边三角形,AD为△ABC的角平分线,∴∠AEF=60°,AD⊥EF.∵DE⊥AB,∴∠DEA=90°,∴∠DEO=30°,∴OD=DE,∴DO=AD.【点睛】本题考查了等边三角形的判定和性质、30°角所对直角边等于斜边的一半的性质,掌握30°角所对直角边等于斜边的一半是解答本题的关键.20、(1);(2)①与函数关系式为,②当的面积为18时,或1.【分析】(1)先根据t的范围分析出Q点在OC上,P在OA上,用t表示出OQ和OP的长,根据勾股定理列式求出t的值;(2)①分三种情况讨论,根据t的不同范围,先用t表示出线段长,再表示出面积;②根据①所列的式子,令面积等于18,求出符合条件的t的值.【详解】(1)当时,,,即Q点在OC上,P在OA上时,设时间为,则,,∴在中,,令.解得,当时,;(2)①当时,即Q在OC上,P在OA上时,,即;当时,即Q在CB上,P在OA上时,,即;当时,即Q在BC上,P在AB上时,,即,∴;综上,与函数关系式为;②当时,,当时,令,解得,符合题意,当时,令,解得,(舍去),综上,当的面积为18时,或1.【点睛】本题考查动点问题,解题的关键是根据几何知识,用时间t表示长线段长进而表示出三角形的面积,需要注意根据点的运动过程进行分类讨论.21、(1)C(﹣3,1),直线AC:y=x+2;(2)证明见解析;(3)N(﹣,0).【分析】(1)作CQ⊥x轴,垂足为Q,根据条件证明△ABO≌△BCQ,从而求出CQ=OB=1,可得C(﹣3,1),用待定系数法可求直线AC的解析式y=x+2;(2)作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,证明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直线BC的解析式,从而确定点P的坐标,假设存在点N使△BPN的面积等于△BCM面积的,然后可求出BN的长,比较BM,BN的大小,判断点N是否在线段BM上即可.【详解】解:(1)如图1,作CQ⊥x轴,垂足为Q,∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∵BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∵DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=,则BN·×,∴BN=,ON=,∴BN<BM,∴点N在线段BM上,∴N(﹣,0).考点:1.等腰直角三角形的性质;2.全等三角形的判定与性质;3.待定系数法求解析式.22、1【分析】利用平方根,算术平方根定义求出与的值,进而求出的值,利用立方根定义计算即可求出值.【详解】解:根据题意得:,,解得:,,即,27的立方根是1,即的立方根是1.【点睛】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.23、(1)证明见解析;(2)的周长为1.【分析】(1)先根据Rt△BCE中,证明为的中点,再根据直角三角形斜边上的中线得到,即可证明;(2)根据,得到,根据等腰,求出再根据,,从得到,则为等边三角形,在根据求出的周长.【详解】(1)证明:∵∴又∴∴∴∴为的中点在等腰中,∴∴(2)∵,∴,∵在等腰,∴由(1)知:,为的中点∵∴,,∴又,∴为等边三角形∵∴的周长为1.【点睛】此题主要考查等边三角形的判定与性质,解题的关键是熟知直角三角形的性质、等边三角形的判定与性质.24、(1),;证明过程见解析(2)成立【分析】(1)要证BQ=AP,可以转化为证明,要证明BQ⊥AP,可以证明∠QGA=,只要证出∠CBQ=∠CAP,∠GAQ+∠AQG=即可证出;(2)类比(1)的证明过程,就可以得到结论仍成立.【详解】(1)BQ=AP,BQ⊥AP,理由:∵EF=FP,EF⊥FP,∴∠EPF=,又∵AC⊥BC,∴∠CQP=∠CPQ=,∴CQ=CP,在和中,,∴(SAS),∴BQ=AP.如下图,延长BQ交AP与点G,
∵,∴∠CBQ=∠CAP,在Rt△BCQ中,∠CBQ+∠CQB=,又∠CQB=∠AQG,∴∠GAQ+∠AQG=∠CBQ+∠CQB=,∴∠QGA=,∴BQ⊥AP,故BQ=AP,BQ⊥AP.(2)成立;理由:∵,∴,又∵,∴,∴CQ=CP,在和中,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自动镦锻机商业机会挖掘与战略布局策略研究报告
- 房产赠与合同(2篇)
- 风筝帆板细分市场深度研究报告
- 手动的手工具产品供应链分析
- 非实验室用炉市场分析及投资价值研究报告
- 康养项目投资协议书(2篇)
- 手机支架产业链招商引资的调研报告
- 2024年合作分成合同(扣点版)
- 运载工具底架项目营销计划书
- 陆地车辆用燃气涡轮机市场分析及投资价值研究报告
- 2024-2030年中国汽车电磁干扰屏蔽行业市场发展趋势与前景展望战略分析报告
- MES系统实施管理办法
- 《人工智能导论》课程考试复习题库(含答案)
- 羽毛球运动教学与训练智慧树知到答案2024年黑龙江农业工程职业学院
- 2023-2024学年浙江龙泉市九年级语文上期中考试卷附答案解析
- 2024年二级建造师网考试试题答案
- 15《我与地坛》教学设计2023-2024学年统编版高中语文必修上册
- DL∕T 1687-2017 六氟化硫高压断路器状态评价导则
- 数字教育资源质量评估指标体系建构
- 文言文阅读训练:《通鉴纪事本末-刘邦起兵》(附答案解析与译文)
- 保密及知识产权归属协议范本(2024版)
评论
0/150
提交评论