辽宁省抚顺县联考2023年数学八上期末综合测试试题含解析_第1页
辽宁省抚顺县联考2023年数学八上期末综合测试试题含解析_第2页
辽宁省抚顺县联考2023年数学八上期末综合测试试题含解析_第3页
辽宁省抚顺县联考2023年数学八上期末综合测试试题含解析_第4页
辽宁省抚顺县联考2023年数学八上期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省抚顺县联考2023年数学八上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一组数据2,2,4,3,6,5,2的众数和中位数分别是A.3,2 B.2,3 C.2,2 D.2,42.下列语句中,是命题的为().A.延长线段AB到C B.垂线段最短 C.过点O作直线a∥b D.锐角都相等吗3.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个 B.3个 C.4个 D.5个4.下列四个图案中,是轴对称图形的是()A. B. C. D.5.如图所示,在矩形ABCD中,垂直于对角线BD的直线,从点B开始沿着线段BD匀速平移到D.设直线被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是()A. B. C. D.6.图是一个长为宽为的长方形,用剪刀沿它的所有对称轴剪开,把它分成四块,然后按图那样拼成一个正方形,则中间阴影部分的面积是()A. B.C. D.7.如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有()A.1条 B.2条 C.3条 D.4条8.一副三角板如图摆放,边DE∥AB,则∠1=()A.135° B.120° C.115° D.105°9.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,设正方形ADOF的边长为,则()A.12 B.16 C.20 D.2410.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)11.如图,在中,,,,以点为圆心,小于长为半径画弧,分别交,于点,为圆心,大于长为半径画弧,两弧交于点,作射线,交于点,则到的距离为()A. B. C.3 D.12.在平面直角坐标系中,若点P(m+3,-2m)到两坐标轴的距离相等,则m的值为()A.-1 B.3 C.-1或3 D.-1或5二、填空题(每题4分,共24分)13.过某个多边形一个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是_____边形.14.如图,已知△ABC是等边三角形,分别在AC、BC上取点E、F,且AE=CF,BE、AF交于点D,则∠BDF=______.15.如图所示,是将长方形纸牌ABCD沿着BD折叠得到的,若AB=4,BC=6,则OD的长为_____.16.已知(x-2018)2=15,则(x-2017)2+(x-2019)2的值是_________17.若分式有意义,则的取值范围是_______________.18.4的平方根是.三、解答题(共78分)19.(8分)计算:.20.(8分)阅读下列推理过程,在括号中填写理由.如图,点、分别在线段、上,,交于点,平分,求证:平分.证明:∵平分(已知)∴(______)∵(已知)∴(______)故(______)∵(已知)∴(______)∴(______)∴(等量代换)∴平分(______)21.(8分)已知等腰三角形周长为10cm,腰BC长为xcm,底边AB长为ycm.(1)写出y关于x的函数关系式;(2)求自变量x的取值范围;(3)用描点法画出这个函数的图象.22.(10分)平面直角坐标系xOy中,一次函数=-x+6的图象与x轴,y轴分别交于点A,B.坐标系内有点P(m,m-3).(1)问:点P是否一定在一次函数=-x+6的图象上?说明理由(2)若点P在△AOB的内部(不含边界),求m的取值范围(3)若=kx-6k(k>0),请比较,的大小23.(10分)如图,“丰收1号”小麦的试验田是边长为米的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为米的正方形,两块试验田的小麦都收获了.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?24.(10分)如图,,交于点,.请你添加一个条件,使得,并加以证明.25.(12分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).若点M,N关于y轴对称,求(4a+b)2019的值.26.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC=2时,求证:△ABD≌△DCE;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:.【点睛】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.2、B【分析】根据命题的定义对各个选项进行分析从而得到答案.【详解】A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点睛】此题主要考查学生对命题与定理的理解及掌握情况.3、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.4、D【解析】根据轴对称图形的定义,即可得到答案.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义,解题的关键是熟记定义.5、A【解析】∵直线l从点B开始沿着线段BD匀速平移到D,∴在B点时,EF的长为0,在A点长度最大,到D点长为0,∴图象A符合题意,故选A.6、D【分析】根据图形列出算式,再进行化简即可.【详解】阴影部分的面积S=(a+b)2−2a•2b=a2+2ab+b2−4ab=(a−b)2,故选:D.【点睛】本题考查了完全平方公式的应用,能根据图形列出算式是解此题的关键.7、B【分析】先根据勾股定理算出各条线段的长,即可判断.【详解】,,,,,、的长度均是有理数,故选B.考点:本题考查的是勾股定理点评:解答本题的关键是熟练掌握网格的特征,灵活选用恰当的直角三角形使用勾股定理.8、D【分析】根据两直线平行同旁内角互补解答即可.【详解】解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答本题的关键.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.9、D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.10、A【解析】试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.考点:坐标与图形变化-平移.11、B【分析】如图,作DH⊥AB于H,设DM=DC=x,由S△ABC=S△ADC+S△ADB,可得AC•BC=•AB•DM+CD•AC,列出方程即可解决问题.【详解】解:如图,作DM⊥AB于M,由题意∠DAC=∠DAB,∵DC⊥AC.DM⊥AB,∴DC=DM,设DM=DC=x,在Rt△ABC中,BC=,∵S△ABC=S△ADC+S△ADB,∴AC•BC=•AB•DM+CD•AC,∴∴,∴DM=,故选:B.【点睛】本题考查作图-基本作图、角平分线的性质定理,一元一次方程等知识,解题的关键是熟练掌握角平分线的性质定理,学会构建方程解决问题,属于中考常考题型.12、C【分析】根据到坐标轴的距离相等,分横坐标与纵坐标相等和互为相反数两种情况讨论解答.【详解】解:∵点P(m+3,-2m)到两坐标轴的距离相等∴m+3+(-2m)=0或m+3=-2m解得m=3或m=-1故选:C【点睛】本题考查了点的坐标,难点在于要分两种情况讨论,熟记各象限内点的坐标特征是解题的关键.二、填空题(每题4分,共24分)13、九.【解析】设这个多边形是n边形,由题意得,n﹣2=7,解得:n=9,即这个多边形是九边形,故答案是:九.14、60°.【解析】试题分析:∵△ABC是等边三角形,∴∠BAC=∠ABC=∠C=60°,AB=AC,又∵AE=CF,∴△ABE≌△ACF(SAS),∴∠ABE=∠CAF,∴∠BDF=∠BAD+∠ABE=∠BAD+∠CAF=∠BAC=60°.考点:1.等边三角形的性质;2.全等三角形的性质和判定;3.三角形的外角的性质.15、【分析】设AO=x,则BO=DO=6﹣x,在直角△ABO中利用勾股定理即可列方程求得x的值,则可求出OD的长.【详解】解:∵△BDC′是将长方形纸牌ABCD沿着BD折叠得到的,∴∠C'BD=∠CBD,∵长方形ABCD中,AD∥BC,∴∠ODB=∠CBD,∴∠ODB=∠C'BD,∴BO=DO,设AO=x,则BO=DO=6﹣x,在直角△ABO中,AB2+AO2=BO2,即42+x2=(6﹣x)2,解得:x=,则AO=,∴OD=6﹣=,故答案为:.【点睛】本题考查直角三角形轴对称变换及勾股定理和方程思想方法的综合应用,熟练掌握直角三角形轴对称变换的性质及方程思想方法的应用是解题关键.16、1【分析】将变形为,将看作一个整体,利用完全平方公式展开后再代入已知条件即可.【详解】解:∵∴展开得:∵∴原式故答案为:1.【点睛】本题考查的知识点是整式的化简求值以及完全平方公式的应用,掌握完全平方公式的内容是解此题的关键.17、【分析】根据分式有意义的条件:分母不能为0即可确定的取值范围.【详解】∵分式有意义解得故答案为:.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.18、±1.【解析】试题分析:∵,∴4的平方根是±1.故答案为±1.考点:平方根.三、解答题(共78分)19、﹣1.【分析】利用二次根式的化简、有理数的乘方和二次根式的运算进行计算即可.【详解】原式==﹣1.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.20、角平分线的定义;两直线平行,内错角相等;等量代换;两直线平行,同位角相等;两直线平行,内错角相等;角平分线的定义【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论;【详解】证明:∵平分(已知),∴(角平分线的定义),∵(已知),∴(两直线平行,内错角相等),故(等量代换),∵(已知),∴(两直线平行,同位角相等),∴(两直线平行,内错角相等),∴(等量代换),∴平分(角平分线的定义);【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.21、(1)y=10﹣2x;(2)2.5<x<5;(3)见解析.【分析】(1)根据等腰三角形的周长公式求出y与x的函数关系式;

(2)求自变量x的取值范围,要注意三角形的特点,两边之和大于第三边;

(3)根据(1)(2)中所求画出图象即可.【详解】解:(1)∵等腰三角形的周长为10cm,腰BC长为xcm,底边AB长为ycm,∴2x+y=10,∴y关于x的函数关系式为y=10﹣2x;(2)根据两边之和大于第三边:2x>10-2x,解得x>2.5,2x<10,解得x<5,故自变量x的取值范围为2.5<x<5;(3)如图所示:【点睛】本题考查了等腰三角形的性质,一次函数的应用,根据已知得出y与x的函数关系式是解题关键.22、(1)点P不一定在函数的图像上,理由详见解析;(2);(3)详见解析.【分析】(1)要判断点P(m,m−3)是否在函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可;(2)由题意可得0<m<6,0<m−3<6,m−3<−m+6,解不等式即可求出m的取值范围;(3)求出过点(6,0),然后根据k>0,利用一次函数的性质分段比较,的大小即可.【详解】解:(1)不一定,∵当时,,∴只有当时,,∴点P不一定在函数的图像上;(2)∵函数的图像与x轴,y轴分别交于A,B,易得,∵点P在的内部,∴,∴;(3)∵=kx-6k=k(x-6),∴当x=6时,,∴=kx-6k的图像经过点(6,0),即过A点坐标,∵k>0,∴当x>6时,y2>y1,当x=6时,y2=y1,当x<6时,y2<y1.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质以及一次函数与不等式,熟知函数图象上的点的坐标满足函数解析式是解题关键.23、(1)丰收2号;(2).【分析】(1)根据题意可以求得两块试验田的面积,从而可以求得哪种小麦的单位面积产量高;(2)根据“高的单位面积产量除以低的单位面积产量”进行计算求解即可.【详解】(1)“丰收1号”小麦的试验田面积是,单位面积产量是“丰收2号”小麦的试验田面积是,单位面积产量是,∴∴所以“丰收2号”小麦的单位面积产量高.(2)所以,“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的倍.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.24、添加条件(或),理由见解析【解析】根据全等三角形的判定方法即可判断.【详解】添加条件(或).证明:∵,∴.在和中,∴.添加OD=OC或AD=BC同法可证.故答案为OA=OB或OD=OC或AD=BC.【点睛】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题.25、﹣1【分析】关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得关于a,b的方程组,进而得出代数式的值.【详解】解:∵M,N关于y轴对称,∴,解得:,∴.【点睛】关于y轴的对称点的坐标特点,横坐标互为相反数,纵坐标不变;关于x轴的对称点的坐标特点,纵坐标互为相反数,横坐标不变;关于原点的对称点的坐标特点,横坐标互为相反数,纵坐标互为相反数.26、(1)25°;小;(2)见解析;(3)当∠BDA=110°或80°时,△ADE是等腰三角形.【分析】(1)根据三角形内角和定理,将已知数值代入即可求出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论