![二级培训项目基础portfoio management_第1页](http://file4.renrendoc.com/view11/M00/28/24/wKhkGWXuPjyAbFVUAAGfxNkBo-8715.jpg)
![二级培训项目基础portfoio management_第2页](http://file4.renrendoc.com/view11/M00/28/24/wKhkGWXuPjyAbFVUAAGfxNkBo-87152.jpg)
![二级培训项目基础portfoio management_第3页](http://file4.renrendoc.com/view11/M00/28/24/wKhkGWXuPjyAbFVUAAGfxNkBo-87153.jpg)
![二级培训项目基础portfoio management_第4页](http://file4.renrendoc.com/view11/M00/28/24/wKhkGWXuPjyAbFVUAAGfxNkBo-87154.jpg)
![二级培训项目基础portfoio management_第5页](http://file4.renrendoc.com/view11/M00/28/24/wKhkGWXuPjyAbFVUAAGfxNkBo-87155.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TopicWeightingsinCFALevel2-Session StudySession1-Ethics&Professional10-StudySessionQuantitative5-StudySessionEconomicTopicWeightingsinCFALevel2-Session StudySession1-Ethics&Professional10-StudySessionQuantitative5-StudySessionEconomic5-StudySession5-FinancialStatement15-StudySession7-Corporate5-StudySession9-Equity15-StudySession12-FixedIncome10-StudySessionStudySessionAlternative5-StudySession16-PortfolioSS16:PortfolioManagement:Process,AssetAllocation,andRiskManagementR47TheportfolioManagementProcessandtheInvestmentPolicyStatementR48AnSS16:PortfolioManagement:Process,AssetAllocation,andRiskManagementR47TheportfolioManagementProcessandtheInvestmentPolicyStatementR48AnintroductiontomultifactormodelsR49MeasuringandManagingMarketRiskSS17:EconomicAnalysis,ActiveManagement,andTradingR50EconomicsandinvestmentR51AnalysisofactiveportfolioHigh-FrequencyTrading3-TheportfolioManagementProcessandtheInvestmentPolicyStatement4-TheportfolioManagementProcessandtheInvestmentPolicyStatement4-PortfolioInvestmentObjectivesandConstrainsManagementinvestment5-PortfolioInvestmentObjectivesandConstrainsManagementinvestment5-PortfolioPortfolioPerspective:focusontheaggregateofalltheinvestor’sPortfolioPortfolioPerspective:focusontheaggregateofalltheinvestor’sholdingstheportfolioHarryMarkowitz→ModernPortfolioTheorySomepricingsuchasCAPM,APT,ICAPM,→thesepricingmodelsareallbasedontheprinciplethatsystematicriskispriced→shouldanalyzetherisk-returntradeoffoftheportfolio6-PortfoliotheplanningIdentifyingandSpecifyingtheInvestor’sObjectiveandPortfoliotheplanningIdentifyingandSpecifyingtheInvestor’sObjectiveandCreatingtheInvestmentPolicyFormingCapitalMarketsCreatingtheStrategicAssettheexecutionTacticalAssetSecuritythefeedbackMonitoringand7-InvestmentObjectivesandInvestmentInvestmentobjectivesrelatetowhattheinvestorwantstoaccomplishwiththeportfolioObjectivesareInvestmentObjectivesandInvestmentInvestmentobjectivesrelatetowhattheinvestorwantstoaccomplishwiththeportfolioObjectivesaremainlyconcernedwithriskandreturnRiskRiskAbilitytoTakeBelowAboveAverageBelowAboveRiskmeasurement-Valueatrisk8-InvestmentObjectivesandSomespecificfactorsthataffecttheabilitytoInvestmentObjectivesandSomespecificfactorsthataffecttheabilitytoacceptRequiredspendingLong-termwealthFinancialSomespecificfactorsthataffectthewillingnesstoacceptReturnHistorical9-InvestmentObjectivesandReturnReturnsuchas:totalReturn;absoluteReturn;returnrelativetothebenchmark’s;returnnominalreturns;realreturnsinflation-adjustedInvestmentObjectivesandReturnReturnsuchas:totalReturn;absoluteReturn;returnrelativetothebenchmark’s;returnnominalreturns;realreturnsinflation-adjustedreturns;pretaxreturns;post-taxreturnsReturndesireanddesiredreturnisthatlevelofreturnstatedbytheclient,includinghowmuchtheinvestorwishestoreceivefromtheportfoliorequiredreturnrepresentssomelevelofreturnthatmustbeachievedbytheportfolio,atleastonanaveragebasistomeetthetargetfinancialobligations10-InvestmentObjectivesandInvestmentInvestmentconstrainsarethosefactorsrestrictingorlimitingtheuniverseofavailableinvestmentchoices.Liquidityrequirement:aneedforcashofInvestmentObjectivesandInvestmentInvestmentconstrainsarethosefactorsrestrictingorlimitingtheuniverseofavailableinvestmentchoices.Liquidityrequirement:aneedforcashofnewcontributionsorsavingsataspecifiedpointintime.Timehorizon:thetimeperiodassociatedwithaninvestmentobjective(shortterm,longterm,oracombinationofthetwo).Taxconcerns:taxpaymentsreducetheamountofthetotalLegalandregulatoryfactors:externalfactorsimposedbygovernmental,regulatory,oroversightauthoritiestoconstraininvestmentdecision-Uniquecircumstances:internalfactors,anindividualinvestor’sportfoliochoicesmaybeconstrainedbycircumstancesfocusingonhealthneeds,supportofdependents,andothercircumstancesuniquetothe11-awrittenplanningdocumentthatgovernsallinvestmentdecisionsfortheclientMainawrittenplanningdocumentthatgovernsallinvestmentdecisionsfortheclientMainBereadilyimplementedbycurrentorfutureinvestmentPromotelong-termdisciplineforportfolioHelpprotectagainstshort-termshiftsinstrategywheneitherenvironmentsorportfolioperformancecausepanicor12-Aclientdescriptionthatprovidesenoughbackgroundsoanycompetentinvestmentadvisercangiveacommonunderstandingoftheclient’ssituation.ThepurposeoftheAclientdescriptionthatprovidesenoughbackgroundsoanycompetentinvestmentadvisercangiveacommonunderstandingoftheclient’ssituation.ThepurposeoftheIPSwithrespecttopolicies,objectives,goals,restrictions,andportfoliolimitations.Identificationofdutiesandresponsibilitiesofpartiesinvolved.Theformalstatementofobjectivesandconstrains.AcalendarscheduleforbothportfolioperformanceandIPSreview.Assetallocationrangesandstatementsregardingflexibilityandrigiditywhenformulatingormodifyingthestrategicassetallocation.Guidelinesforportfolioadjustmentsandrebalancing.13-ThreeapproachesforinvestmentPassiveinvestmentstrategyapproach:portfoliocompositionThreeapproachesforinvestmentPassiveinvestmentstrategyapproach:portfoliocompositiondoesnotreacttochangesinexpectations,anexampleinindexingActiveapproach:involvesholdingaportfoliodifferentfromabenchmarkorcomparisonportfolioforthepurposeofproducingpositiveexcessrisk-adjustedreturnsSemiactiveapproach:anindexingapproachwithcontrolleduseofweightsdifferentfrombenchmark14-CMEandStrategicAssetCapitalmarketThemanager’sthirdtaskCMEandStrategicAssetCapitalmarketThemanager’sthirdtaskintheplanningprocessistoformcapitalmarketexpectations.Long-runforecastsofriskandreturncharacteristicsforvariousassetclassesformthebasisforchoosingportfoliosthatmaximizeexpectedreturnforgivenlevelsofrisk,orminimizeriskforgivenlevelsofexpectedreturn.StrategicAssetthefinalstepintheplanningstage,combinestheIPSandcapitalmarketexpectationstoformulateweightingsonacceptableasset15-ManagementinvestmentJustifyethicalconductasarequirementformanaginginvestmentManagementinvestmentJustifyethicalconductasarequirementformanaginginvestment theinvestmentprofessionalwhomanagesclientportfoliowellmeetsbothstandardsofcompetenceandstandardsofconduct theappropriatestandardofconductisembodiedbytheCFAInstituteCodeandStandards16-Anintroductiontomultifactor17-Anintroductiontomultifactor17-ArbitragePricingTheory(APT)MultifactorModelMacroeconomicFactorFundamental•StandardizedbetaArbitragePricingTheory(APT)MultifactorModelMacroeconomicFactorFundamental•StandardizedbetaApplication:ReturnAttributionApplication:PortfolioConstruction18-ArbitragePricingTheoryassetpricingmodeldevelopedbythearbitragepricingArbitragePricingTheoryassetpricingmodeldevelopedbythearbitragepricingAfactormodeldescribesassetTherearemanyassets,soinvestorscanformwell-diversifiedportfoliosthateliminateasset-specificriskNoarbitrageopportunitiesexistamongwell-diversifiedExactlyE(RP)RFP,1(1)P,2(2)...P,k(k19-ArbitragePricingTheoryThefactorriskpremium(orfactorprice,λArbitragePricingTheoryThefactorriskpremium(orfactorprice,λj)representstheexpectedreturninexcessoftheriskfreerateforaportfoliowithasensitivityof1tofactorjandasensitivityof0toallotherfactors.Suchaportfolioiscalledapurefactorportfolioforfactorj.TheparametersoftheAPTequationaretherisk-freerateandthefactorrisk-premiums(thefactorsensitivitiesarespecifictoindividual20-ArbitragePricingTheoryArbitrageTheAPTassumestherearenoArbitragePricingTheoryArbitrageTheAPTassumestherearenomarketimperfectionspreventinginvestorsfromexploitingarbitrageopportunitiesextremelongandshortpositionsarepermittedandmispricingwilldisappearimmediatelyallarbitrageopportunitieswouldbeexploitedandeliminated21-Example-ArbitragePricingTheorySupposethattwofactors,surpriseininflation(factor1)andsurpriseinGDPgrowth(factor2),explainreturns.AccordingtotheAPT,anarbitrageopportunityexistsunlessE(RP)RFExample-ArbitragePricingTheorySupposethattwofactors,surpriseininflation(factor1)andsurpriseinGDPgrowth(factor2),explainreturns.AccordingtotheAPT,anarbitrageopportunityexistsunlessE(RP)RFβp,1(λ1)+βp,2(λ2Well-diversifiedportfolios,J,K,andL,giveninE(RJ)0.14RF1.0λ1E(RK)0.12RF0.5λ1E(RL)0.11RF1.3λ1E(RP)0.070.02βp,122-ExpectedSensitivitytoSensitivitytoGDPJKLMultifactorMultifactormodelshavegainedimportanceforthepracticalbusinessofportfoliomanagementfortwomainreasons.multifactorMultifactorMultifactormodelshavegainedimportanceforthepracticalbusinessofportfoliomanagementfortwomainreasons.multifactormodelsexplainassetreturnsbetterthanthemarketmodelmultifactormodelsprovideamoredetailedanalysisofriskthandoesasinglefactormodel.23-TypesofMultifactorMacroeconomicFundamentalfactorStatisticalfactorMixedTypesofMultifactorMacroeconomicFundamentalfactorStatisticalfactorMixedfactorSomepracticalfactormodelshavethecharacteristicsofmorethanoneoftheabovecategories.Wecancallsuchmodelsmixedfactormodels.24-MacroeconomicFactorMacroeconomicassumption:thefactorsaresurprisesinmacroeconomicvariablessignificantlyexplainequityexactlyformulaforreturnofassetbi1,b MacroeconomicFactorMacroeconomicassumption:thefactorsaresurprisesinmacroeconomicvariablessignificantlyexplainequityexactlyformulaforreturnofassetbi1,b E(R)bRii i i=returnforassetE(Ri)=expectedreturnforassetFGDP=surpriseintheGDP=surpriseinthecreditquality=GDPsurprisesensitivityofasset=creditqualityspreadsurprisesensitivityofasset=firm-specificsurprisewhichnotbeexplainedbytheSurprise=actualvalue–predicted(expected)25-………MacroeconomicFactorSupposeourforecastatthebeginningofthemonthMacroeconomicFactorSupposeourforecastatthebeginningofthemonthisthatinflationwill0.4percentduringthemonth.Attheendofthemonth,wefindthatinflationwasactually0.5percentduringthemonth.Duringanymonth,Actualinflation=Predictedinflation+SurpriseInthiscase,actualinflationwas0.5percentandpredictedinflation0.4percent.Therefore,thesurpriseininflationwas0.5-0.4=0.126-MacroeconomicFactor SlopecoefficientsarenaturallyinterpretedasthefactorMacroeconomicFactor SlopecoefficientsarenaturallyinterpretedasthefactorsensitivitiesoftheAfactorsensitivityisameasureoftheresponseofreturntoeachunitofincreaseinafactor,holdingallotherfactorsconstant.Thetermεiisthepartofreturnthatisunexplainedbyexpectedreturnorthefactorsurprises.Ifwehaveadequatelyrepresentedthesourcesofcommonrisk(thefactors),thenεimustrepresentanasset-specificrisk.Forastock,itmightrepresentthereturnfromanunanticipatedcompany-specific27-FactorSensitivitiesforaTwo-StockSupposethatstockreturnsareaffectedbytwocommonfactors:surprisesininflationandsurprisesinGDPgrowth.Aportfoliomanagerisanalyzingthereturnsonaportfoliooftwostocks,Manumatic(MANM)andNextech(NXT),ThefollowingequationsdescribethereturnsforFactorSensitivitiesforaTwo-StockSupposethatstockreturnsareaffectedbytwocommonfactors:surprisesininflationandsurprisesinGDPgrowth.Aportfoliomanagerisanalyzingthereturnsonaportfoliooftwostocks,Manumatic(MANM)andNextech(NXT),Thefollowingequationsdescribethereturnsforthosestocks,wherethefactorsFINFL.andFGDP,representthesurpriseininflationandGDPgrowth,respectively:One-thirdoftheportfolioisinvestedinManumaticstock,andtwo-thirdsisinvestedinNextechstock.Formulateanexpressionforthereturnontheportfolio.StatetheexpectedreturnontheCalculatethereturnontheportfoliogiventhatthesurprisesininflationandGDPgrowthare1percentand0percent,respectively,assumingthattheerrortermsforMANMandNXTbothequal0.5percent.28-FactorSensitivitiesforaTwo-Stock29-CorrectAnswer1Theportfolio'sreturnisthefollowingweightedaverageofthereturnstoFactorSensitivitiesforaTwo-Stock29-CorrectAnswer1Theportfolio'sreturnisthefollowingweightedaverageofthereturnstothetwostocks:Rp=(1/3)(0.09)+(2/3)(0.12)+[(1/3)(-I)+(2/3)(2)]FINFL+[(1/3)(1)+(2/3)(4)]FGDP+(1/3)εMANM+(2/3)=0.11+1FINFL+3FGDP+(1/3)εMANM+(2/3)CorrectAnswer2Theexpectedreturnontheportfoliois11percent,thevalueoftheinterceptintheexpressionobtainedinPart1.CorrectAnswer3Rp=0.11+1FINFL+3FGDP+(1/3)εMANM+(2/3)εNXT=0.11+1(0.01)+3(0)+(1/3)(0.005)+(2/3)(0.005)=0.125or12.5percentFundamental求出FP/ERiNoeconomicAsseti'sattributvalue-averageattributeb(attributeFundamental求出FP/ERiNoeconomicAsseti'sattributvalue-averageattributeb(attribute(P/E)1-P/30-sectionaldata)………Standardized31-Suppose,forexample,thataninvestmenthasadividendyieldStandardized31-Suppose,forexample,thataninvestmenthasadividendyieldpercentandthattheaveragedividendyieldacrossallstocksbeingconsideredis2.5percent.Further,supposethatthestandarddeviationofdividendyieldsacrossallstocksis2percent.Theinvestment'ssensitivitytodividendyieldis(3.5%-2.5%)/2%=0.50,orone-halfstandarddeviationaboveaverage.StandardizedThescalingpermitsallfactorsensitivitiestobeinterpretedsimilarly,StandardizedThescalingpermitsallfactorsensitivitiestobeinterpretedsimilarly,despitedifferencesinunitsofmeasureandscaleinthevariables.Theexceptiontothisinterpretationisfactorsforbinaryvariablessuchasindustrymembership.Acompanyeitherparticipatesinanindustryoritdoesnot.Theindustryfactorsensitivitieswouldbe0-1dummyinmodelsthatrecognizethatcompaniesfrequentlyoperateinmultipleindustries,thevalueofthesensitivitywouldbe1foreachindustryinwhichacompanyoperated.32-StatisticalFactorStatisticalfactorInastatisticalfactormodel,statisticalmethodsareappliedtohistoricalreturnsofagroupofsecuritiestoextractStatisticalFactorStatisticalfactorInastatisticalfactormodel,statisticalmethodsareappliedtohistoricalreturnsofagroupofsecuritiestoextractfactorsthatcanexplaintheobservedreturnsofsecuritiesinthegroup.Instatisticalfactormodels,thefactorsareactuallyportfoliosofthesecuritiesinthegroupunderstudyandarethereforedefinedbyportfolioweights.Twomajortypesoffactormodelsarefactoranalysismodelsandprincipalcomponentsmodels.FactoranalysismodelsbestexplainhistoricalreturnPrincipalcomponentsmodelsbestexplainthehistoricalreturnAdvantageandMajoradvantage:itmakeminimalMajorweakness:thestatisticalfactorsdonotlendthemselveswelltoeconomicinterpretation33-ArbitragePricingTheoryTherelationbetweenAPTandmultifactor34-Multifactorcross-sectionalequilibriumpricingmodelthatexplainsthevariationacrossassets’expectedreturnstime-seriesArbitragePricingTheoryTherelationbetweenAPTandmultifactor34-Multifactorcross-sectionalequilibriumpricingmodelthatexplainsthevariationacrossassets’expectedreturnstime-seriesregressionthatexplainsthevariationovertimeinreturnsforoneassetequilibrium-pricingmodelthatassumesnoarbitrageadhoc(i.e.,ratherthanbeingderiveddirectlyfromanequilibriumtheory,thefactorsareidentifiedempiricallybylookingformacroeconomicvariablesthatbestfitthedata)risk-freeexpectedreturnderivedfromtheAPTequationinmacroeconomicfactormodelArbitragePricingTheoryComparisonCAPMand35-Allinvestorsshouldholdsomecombinationofthemarketportfolioandtherisk-freeasset.Tocontrolrisk,lessriskaverseinvestorssimplyholdmoreofArbitragePricingTheoryComparisonCAPMand35-Allinvestorsshouldholdsomecombinationofthemarketportfolioandtherisk-freeasset.Tocontrolrisk,lessriskaverseinvestorssimplyholdmoreofthemarketportfolioandlessoftherisk-freeasst.APTgivesnospecialroletothemarketportfolio,andisfarmoreflexiblethanCAPM.Assetreturnsfollowamultifactorprocess,allowinginvestorstomanageseveralriskfactors,ratherthanjustone.Theriskoftheinvestor’sportfolioisdeterminedsolelybytheresultingportfoliobeta.maydrivetheinvestortoholdportfoliostitledawayfromthemarketportfolioinordertohedgeorspeculateonmultipleriskfactors.Application:ReturnMultifactormodelscanhelpusunderstandindetailtheApplication:ReturnMultifactormodelscanhelpusunderstandindetailthesourcesofmanager’sreturnsrelativetoaActivereturn=Rp−Withthehelpofafactormodel,wecananalyzeaportfolioactivereturnasthesumoftwoThefirstcomponentistheproductoftheportfoliomanager’sfactortilts(overweightorunderweightrelativetothebenchmarkfactorsensitivities)andthefactorreturns;wecallthatcomponentthereturnfromfactortilts.Thesecondcomponentofactivereturnreflectsthemanager’sskillinindividualassetselection(abilitytooverweightsecuritiesthatoutperformthebenchmarkorunderweightsecuritiesthatunderperformthebenchmark);wecallthatcomponentsecurityselection.36-Application:ReturnActivereturn=factorreturn+securityselectionFactor- kApplication:ReturnActivereturn=factorreturn+securityselectionFactor- kkpk=factorsensitivityforthekthfactorintheactive=factorsensitivityforthekthfactorinthebenchmark=factorriskpremiumforfactorSecuritySecurityselectionreturn=activereturn–factorThesecurityselectionreturnisthentheresidualdifferencebetweenactivereturnandfactorreturn.37-Application:RiskActiveDefinition:thestandarddeviationofactiveExactly(RRactiverisk(RPApplication:RiskActiveDefinition:thestandarddeviationofactiveExactly(RRactiverisk(RPRBtInformationDefinition:theratioofmeanactivereturntoactivePurpose:atoolforevaluatingmeanactivereturnsperunitofactiveExactIRs(R 38-Example:Information39-Toillustratethecalculation,ifaportfolioachievedameanreturnof9percentduringthesameperiodthatitsbenchmarkearnedameanreturnof7.5percent,andtheportfolio'strackingriskExample:Information39-Toillustratethecalculation,ifaportfolioachievedameanreturnof9percentduringthesameperiodthatitsbenchmarkearnedameanreturnof7.5percent,andtheportfolio'strackingriskwas6percent,wewouldcalculateaninformationratioof(9%-7.5%)/6%=0.25.Settingguidelinesforacceptableactiveriskortrackingriskisoneofthewaysthatsomeinstitutionalinvestorsattempttoassurethattheoverallriskandstylecharacteristicsoftheirinvestmentsareinlinewiththosedesired.Application:RiskWecanseparateaportfolio'sactiverisksquaredintoApplication:RiskWecanseparateaportfolio'sactiverisksquaredintotwoActiverisksquared=s2 R Activefactorriskisthecontributiontoactiverisksquaredresultingfromtheportfolio'sdifferent-than-benchmarkexposuresrelativetofactorsspecifiedintheriskmodel.Activespecificriskorassetselectionriskisthecontributiontoactiverisksquaredresultingfromtheportfolio'sactiveweightsonindividualassetsasthoseweightsinteractwithassets'residualrisk.Activerisksquared=Activefactorrisk+Activespecific40-SteveMartingale,CFA,isanalyzingtheperformanceofthreeactivelymanagedmutualfundsusingatwo-factormodel.Theresultsofhisriskdecompositionareshownbelow:ActiveSizeFactorStyleSteveMartingale,CFA,isanalyzingtheperformanceofthreeactivelymanagedmutualfundsusingatwo-factormodel.Theresultsofhisriskdecompositionareshownbelow:ActiveSizeFactorStyleWhichfundassumesthehighestlevelofactiveWhichfundassumesthehighestpercentagelevelofWhichfundassumesthelowerpercentagelevelofactivespecific41-CorrectAnswerThetablebelowshowstheproportionalcontributionofvariousresourcesofactiveriskasaproportionofactiverisksquared.StyleFactorSizeCorrectAnswerThetablebelowshowstheproportionalcontributionofvariousresourcesofactiveriskasaproportionofactiverisksquared.StyleFactorSizeTheGammafundhasthehighestlevelofactiverisk(6.1%).Notethatactiveriskisthesquarerootofactiverisksquared(asgiven).TheAlphafundhasthehighestexposuretostylefactorriskasseenby56%ofactiveriskbeingattributedtodifferencesinstyle.TheAlphafundhasthelowestexposuretoactivespecificrisk(15%)asaproportionoftotalactiverisk.42-Application:PortfolioPassivemanagement.Analystscanusemultifactormodelstomatchanindexfund'sfactorexposurestothefactorexposuresApplication:PortfolioPassivemanagement.Analystscanusemultifactormodelstomatchanindexfund'sfactorexposurestothefactorexposuresoftheindextracked.Activemanagement.Manyquantitativeinvestmentmanagersrelyonmultifactormodelsinpredictingalpha(excessrisk-adjustedreturns)orrelativereturn(thereturnononeassetorassetclassrelativetothatofanother)aspartofavarietyofactiveinvestmentstrategies.Inevaluatingportfolios,analystsusemulti-factormodelstounderstandthesourcesofactivemanagers'returnsandassesstherisksassumedrelativetothemanager'sbenchmark(comparisonportfolio).Rules-basedactivemanagement(alternativeindexes).Thesestrategiesroutinelytilttowardfactorssuchassize,value,quality,ormomentumwhenconstructingportfolios.43-Application:PortfolioTheCarhartfour-factormodel(fourfactorERP=RFApplication:PortfolioTheCarhartfour-factormodel(fourfactorERP=RF+β1RMRF+β2SML+β3HML+Accordingtothemodel,therearethreegroupsofstocksthattendtohavehigherreturnsthanthosepredictedsolelybytheirsensitivitytothemarketreturn:Small-capitalizationstocks:SMB=ReturnofSmall–ReturnofLowprice-tobook-ratiostocks,commonlyreferredtoasstocks,HMLStockswhosepriceshavebeenrising,commonlyreferredto―momentum‖stocks:WML=ReturnofWinner–returnof44-MeasuringandManagingMarket45-MeasuringandManagingMarket45-UnderstandingTheConfidenceHistoricalMethodMonteUnderstandingTheConfidenceHistoricalMethodMonteCarloSimulationMethodExtensionsofVaROtherKeyRiskMeasuresApplicationsofRiskMeasuresUsingConstraintsinMarketRisk46-UnderstandingVaRstatesatsomeprobability(often1%or5%)theexpectedlossduringaspecifiedtimeperiod.ThelosscanbestatedUnderstandingVaRstatesatsomeprobability(often1%or5%)theexpectedlossduringaspecifiedtimeperiod.Thelosscanbestatedasapercentageofvalueorasanominalamount.VaRalwayshasadualinterpretation.Ameasureineithercurrencyunits(inthisexample,theeuro)orinpercentageterms.AminimumAstatementreferencesatimehorizon:lossesthatwouldbeexpectedtooccuroveragivenperiodoftime.47-UnderstandingAnalysisshouldconsidersomeadditionalissueswithTheVaRtimeperiodshouldrelatetothenatureofthesituation.AtraditionalstockandbondportfoliowouldlikelyfocusonalongermonthlyorquarterlyVaRUnderstandingAnalysisshouldconsidersomeadditionalissueswithTheVaRtimeperiodshouldrelatetothenatureofthesituation.AtraditionalstockandbondportfoliowouldlikelyfocusonalongermonthlyorquarterlyVaRwhileahighlyleveragedderivativesportfoliomightfocusonashorterdailyVaR.ThepercentageselectedwillaffecttheVaR.A1%VaRwouldbeexpectedtoshowgreaterriskthana5%VaR.Theleft-tailshouldbeexamined.Left-tailreferstoatraditionalprobabilitydistributiongraphofreturns.Theleftsidedisplaysthelowornegativereturns,whichiswhatVaRmeasuresatsomeprobability.Butsupposethe5%VaRislosing$1.37million,whathappensat4%,1%,andsoon?Inotherwords,howmuchworsecanitget?48-Understanding49-Understanding49-50-GivenaVaRof$12.5millionat5%foronemonth,50-GivenaVaRof$12.5millionat5%foronemonth,whichofthefollowingstatementsiscorrect?Thereisa5%chanceoflosing$12.5millionoveroneThereisa95%chancethattheexpectedlossoverthenextmonthislessthan$12.5million.Theminimumlossthatwouldbeexpectedtooccuroveronemonth5%ofthetimeis$12.5million.Estimating3methodstoestimateAnalyticalmethod(variance-covariance/deltanormalHistoricalEstimating3methodstoestimateAnalyticalmethod(variance-covariance/deltanormalHistoricalMonteCarlo51-UnderstandingTheanalyticalmethod(orvariance-covariancemethod)isbasedonthenormaldistributionandtheconceptofone-tailedconfidenceintervals.Example:AnalyticalTheexpectedUnderstandingTheanalyticalmethod(orvariance-covariancemethod)isbasedonthenormaldistributionandtheconceptofone-tailedconfidenceintervals.Example:AnalyticalTheexpectedannualreturnfora$100,000,000portfoliois6.0%andthehistoricalstandarddeviationis12%.CalculateVaRat5%significance.ACFAcandidatewouldknowthat5%inasingletailisassociatedwith1.645,orapproximately1.65,standarddeviationsfromthemeanexpectedreturn.Therefore,the5%annualVaRis:VaRRpz6%1.6512%$100,000,$13,800,52-TheConfidence[,[1.65,1.65][TheConfidence[,[1.65,1.65][1.96,1.96[2.58,2.5868%confidenceintervalis90%confidenceintervalis95%confidenceintervalis99%confidenceintervalμ-μ-μ-μμ-53-Forthe5%VaRis1.65standarddeviationsbelowtheForthe5%VaRis1.65standarddeviationsbelowthe1%VaRis2.33standarddeviationsbelowtheVaRforperiodslessthanayeararecomputedwithreturnandstandarddeviationsexpressedforthedesiredperiodoftime.FormonthlyVaR,dividetheannualreturnby12andthestandarddeviationbythesquarerootof12.Then,computemonthlyVaR.ForweeklyVaR,dividetheannualreturnby52andthestandarddeviationbythesquarerootof52.Then,computeweeklyVaR.Foraveryshortperiod(1-day)VaRcanbeapproximatedbyignoringthereturncomponent(i.e.,enterthereturnaszero).ThiswillmaketheVaRestimateworseasnoreturnisconsidered,butoveronedaytheexpectedreturnshouldbesmall.54-Theexpectedannualreturnfora$100,000,000portfoliois6.0%andtheTheexpectedannualreturnfora$100,000,000portfoliois6.0%andthehistoricalstandarddeviationis12%.CalculateweeklyVaRat1%.Thenumberofstandarddeviationsfora1%VaRwillbe2.33belowthemeanreturn.Theweeklyreturnwillbe6%/52=0.1154%.Theweeklystandarddeviationwillbe12%/521/2=1.6641%VaR=0.1154%-2.33(1.6641%)=-WhichofthefollowingstatementsisnotA1%VaRimpliesadownwardmoveofAonestandarddeviationdownwardmoveisequivalenttoa16%A5%VaRimpliesamoveof1.65standarddeviationslessthantheexpectedvalue.55-Analytical(variance-covariance)AdvantagesoftheanalyticalmethodEasytocalculateAnalytical(variance-covariance)AdvantagesoftheanalyticalmethodEasytocalculateandeasilyunderstoodasasingleAllowsmodelingthecorrelationsofCanbeappliedtoshorterorlongertimeperiodsasDisadvantagesoftheanalyticalmethodAssumesnormaldistributionofSomesecuritieshaveskewedVariance-covarianceVaRhasbeenmodifiedtoattempttodealwithskewandoptionsinthedelta-normalmethod.Manyassetsexhibitleptokurtosis(fatThedifficultyofestimatingstandarddeviationinverylarge56-HistoricalAdvantagesofthehistoricalmethodVeryeasytocalculateHistoricalAdvantagesofthehistoricalmethodVeryeasytocalculateandDoesnotassumeareturnsCanbeappliedtodifferenttimeperiodsaccordingtoindustryTheprimarydisadvantageofthehistoricalmethodistheassumptionthatthepatternofhistoricalreturnswillrepeatinthefuture(i.e.,itisindicativeoffuturereturns).57-58-Youhaveaccumulated100dailyreturnsforyour$100,000,000portfolio.Afterrankingthereturnsfromhighesttolowest,youidentifythelowerfivereturns:58-Youhaveaccumulated100dailyreturnsforyour$100,000,000portfolio.Afterrankingthereturnsfromhighesttolowest,youidentifythelowerfivereturns:-0.0019,-0.0025,-0.0034,-0.0096,-CalculatedailyVaRat5%significantusingthehistoricalSincethesearethelowestfivereturns,theyrepresentthe5%lowertail
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体验店行业市场营销总结
- 2025-2030全球无DEHP分隔膜无针输液接头行业调研及趋势分析报告
- 2025-2030全球基因组注释服务行业调研及趋势分析报告
- 2025-2030全球酚醛彩钢板行业调研及趋势分析报告
- 2025年全球及中国隧道安全监测系统行业头部企业市场占有率及排名调研报告
- 2025-2030全球燃气轮机仿真软件行业调研及趋势分析报告
- 2025年全球及中国自动水力平衡阀行业头部企业市场占有率及排名调研报告
- 2025-2030全球办公室文件柜行业调研及趋势分析报告
- 2025年全球及中国4-苯氧基苯酚行业头部企业市场占有率及排名调研报告
- 2025-2030全球太空级电机控制器行业调研及趋势分析报告
- 护理人文知识培训课件
- 建筑工程施工安全管理课件
- 2025年春新人教版数学七年级下册教学课件 7.2.3 平行线的性质(第1课时)
- 安徽省合肥市2025年高三第一次教学质量检测地理试题(含答案)
- 2025年新合同管理工作计划
- 统编版八年级下册语文第三单元名著导读《经典常谈》阅读指导 学案(含练习题及答案)
- 风光储储能项目PCS舱、电池舱吊装方案
- 产业链竞争关联度
- TTJSFB 002-2024 绿色融资租赁项目评价指南
- 高考地理一轮复习学案+区域地理填图+亚洲
- 全新车位转让协议模板下载(2024版)
评论
0/150
提交评论