版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年辽宁省锦州市凌海安屯中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线的焦点坐标为(
)A.(-,0)
B.(-4,0)
C.(0,-)
D.(0,-2)参考答案:D【分析】将抛物线方程化为标准方程,求出的值,判断开口方向及焦点所在的坐标轴,即可得到焦点坐标【详解】将抛物线化为标准形焦点坐标为式,焦点在轴上,开口向下其焦点坐标为故选
2.在△ABC中,(、b、c分别为角A、B、C的对边),则△ABC的形状为
(
)
A.正三角形
B.直角三角形
C.等腰三角形或直角三角形
D.等腰直角三角形参考答案:B略3.已知矩形的边长满足,则矩形面积的最大值为
(A)3
(B)6
(C)8
(D)9参考答案:A略4.有如下三个命题:①分别在两个平面内的直线一定是异面直线;②过平面的一条斜线有且只有一个平面与垂直;③垂直于同一个平面的两个平面平行其中真命题的个数是
(
)A.0
B.1
C.2
D.3参考答案:B5.设,若,则(
)A.
B.
C.
D.参考答案:B略6.复数z满足(1+2i)z=4+ai(a∈R,i是虚数单位),若复数z的实部与虚部相等则a等于
A.12
B.4
C.
D.l2参考答案:D略7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如图,则下面结论中错误的一个是()A.乙的众数是21 B.甲的中位数是24C.甲的极差是29 D.甲罚球命中率比乙高参考答案:B【考点】茎叶图.【分析】利用茎叶图的性质、众数、中位数、极差的定义求解.【解答】解:由茎叶图知,乙的众数是21,故A正确;甲的中位数是=23,故B错误;甲的极差是37﹣8=29,故C正确;由茎叶图得到甲的数据集中于茎叶图的左下方,乙的数据集中于茎叶图的右上方,所以甲罚球命中率比乙高,故D正确.故选:B.8.已知命题,其中正确的是(
)A.
B.C.
D.参考答案:C9.设A是正方体的一条棱,这个正方体中与A平行的棱共有(
)A、1条
B、
2条
C、
3条
D、4条参考答案:C略10.设A、B、C、D是球面上的四点,AB、AC、AD两两互相垂直,且,,,则球的表面积为(
)A.
B.
C.
D.
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知P为抛物线上任一点,则P到直线距离的最小值为__________。参考答案:略12.定义:称为n个正数p1,p2,…,pn的“均倒数”,若数列{an}的前n项的“均倒数”为,则数列{an}的通项公式为.参考答案:4n﹣3【考点】数列的函数特性.【分析】设数列{an}的前n项和为Sn.由题意可得:=,即Sn=2n2﹣n,利用递推关系即可得出.【解答】解:设数列{an}的前n项和为Sn.由题意可得:=,∴Sn=2n2﹣n,∴n=1时,a1=S1=1;n≥2时,an=Sn﹣Sn﹣1=2n2﹣n﹣[2(n﹣1)2﹣(n﹣1)]=4n﹣3,n=1时上式也成立,∴an=4n﹣3.故答案为:4n﹣3.13.设常数,若的二项展开式中项的系数为-10,则________.参考答案:-214.若函数在处有极大值,则常数的值为_________;参考答案:6略15.如图,是边长为的正方形,动点在以为直径的圆弧上,则的取值范围是 .
参考答案:16.函数y=的最小值是__________.参考答案:略17.已知p:对,
恒成立;q:关于的方程有实数根;如果为真,为假,则实数的取值范围是______________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.甲、乙两人玩游戏,规则如流程框图所示,求甲胜的概率.参考答案:由题意知“甲胜”意味着两次取出的都是红球,因为袋里有3红1白四个球,把3个红球记为a1,a2,a3,1个白球记为b,两次取球的不同结果有(a1,a2),(a1,a3),(a1,b),(a2,a1),(a2,a3),(a2,b),(a3,a1),(a3,a2),(a3,b),(b,a1),(b,a2),(b,a3),共12种情况,其中“两次取出的都是红球”的不同结果有:(a1,a2),(a1,a3),(a2,a1),(a2,a3),(a3,a1),(a3,a2),共6种情况,所以甲胜的概率是P==.19.已知椭圆=1(a>b>0)的离心率为,且过点,记椭圆的左顶点为A.(1)求椭圆的方程;(2)设垂直于y轴的直线l交椭圆于B,C两点,试求△ABC面积的最大值.参考答案:考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)根据椭圆=1(a>b>0)的离心率为,且过点,建立方程,求出几何量,从而可得椭圆C的方程;(2)设B(m,n),C(﹣m,n),则S△ABC=×2|m|×|n|=|m|?|n|,利用基本不等式可求△ABC面积的最大值解答:解:(1)∵椭圆=1(a>b>0)的离心率为,且过点,∴=,,∴a=1,b=c=,所以椭圆C的方程为x2+2y2=1;(2)设B(m,n),C(﹣m,n),则S△ABC=×2|m|×|n|=|m|?|n|,又1=m2+2n2≥2|m|?|n|,所以|m|?|n|≤,当且仅当|m|=|n|时取等号…8分从而S△ABC≤,即△ABC面积的最大值为.点评:本题考查椭圆的性质与方程,考查三角形面积的计算,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.20.已知过点的圆的圆心为.⑴求圆的方程;⑵若过点的直线被圆截得的弦长为,求直线的方程.参考答案:⑴圆半径即为,所以,……………2分所以圆的方程为.……6分21.(本小题满分10分)在中,,,.(1)求长;(2)求的值.参考答案:(1)解:在△ABC中,根据正弦定理,于是AB=(2)解:在△ABC中,根据余弦定理,得cosA=于是
sinA=
从而sin2A=2sinAcosA=,cos2A=cos2A-sin2A=所以
sin(2A-)=sin2Acos-cos2Asin=22.已知双曲线方程为16x2﹣9y2=144.(1)求该双曲线的实轴长、虚轴长、离心率;(2)若抛物线C的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线C的方程.参考答案:【考点】双曲线的简单性质.【分析】(1)将双曲线方程化为标准方程,求出a,b,c,即可得到所求实轴长、虚轴长、离心率;(2)求出双曲线的中心坐标和左顶点坐标,设抛物线C的方程为y2=﹣2px(p>0),由焦点坐标,可得p的方程,解方程即可得到所求.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《市场营销岗位介绍》课件
- 《创造创新方法概论》课件
- 护理服务全过程案例运用
- 《胃炎胃溃疡》课件
- 三年级上册科学教科版课件《天气预报是怎样制作出来的》
- 外贸合同范本(2篇)
- 《石油和天然气》课件
- 2024年辽宁省葫芦岛市公开招聘警务辅助人员(辅警)笔试必刷经典测试卷(2)含答案
- 2021年黑龙江省黑河市公开招聘警务辅助人员(辅警)笔试专项训练卷(1)含答案
- 2024-2025学年山东省济宁市梁山县人教版四年级上册期中考试数学试卷(原卷版)-A4
- 初中济南版生物实验报告单
- 北京邮电大学《自然语言处理》2023-2024学年第一学期期末试卷
- 艾滋病、乙肝、梅毒健康宣教
- 《国有企业管理人员处分条例》学习解读课件
- 中国竹编艺术智慧树知到期末考试答案章节答案2024年浙江广厦建设职业技术大学
- 国开电大-工程数学(本)-工程数学第4次作业-形考答案
- 衬里工业管道施工工艺标准
- 号间冷塔冷却三角组合及安装作业指导书
- 突发公共卫生事件处理流程图
- 年产32000t粗锌电炉熔炼车间设计
- NPort5130配置说明及布线图
评论
0/150
提交评论