内蒙古呼和浩特市土默特左旗第一中学2023-2024学年高一数学第一学期期末综合测试试题含解析_第1页
内蒙古呼和浩特市土默特左旗第一中学2023-2024学年高一数学第一学期期末综合测试试题含解析_第2页
内蒙古呼和浩特市土默特左旗第一中学2023-2024学年高一数学第一学期期末综合测试试题含解析_第3页
内蒙古呼和浩特市土默特左旗第一中学2023-2024学年高一数学第一学期期末综合测试试题含解析_第4页
内蒙古呼和浩特市土默特左旗第一中学2023-2024学年高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼和浩特市土默特左旗第一中学2023-2024学年高一数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若是钝角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.给出下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若,则与的终边相同;④若,是第二或第三象限的角.其中正确的命题个数是()A.1 B.2C.3 D.44.设为全集,是集合,则“存在集合使得是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.A. B.C.1 D.6.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.7.若,,,则A B.C. D.8.若,且为第二象限角,则()A. B.C. D.9.下列函数中,图象关于坐标原点对称的是()A.y=x B.C.y=x D.10.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.11.若函数在区间上单调递增,则实数k的取值范围是()A. B.C. D.12.若是定义在(-∞,+∞)上的偶函数,∈[0,+∞)且(),则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.化简_____14.函数的零点为______15.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数16.设b>0,二次函数y=ax2+bx+a2-1的图象为下列之一,则a的值为______________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知全集,集合,.(1)求;(2)若集合,且,求实数a的取值范围.18.设函数.(1)求的单调增区间;(2)求在上的最大值与最小值.19.已知圆C过点,且与圆M:关于直线对称求圆C的方程;过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由20.已知定义在上的函数是奇函数(1)求函数的解析式;(2)判断的单调性,并用单调性定义证明21.食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元)(1)求的值;(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大22.某商品上市天内每件的销售价格(元)与时间(天)函数的关系是,该商品的日销售量(件)与时间(天)的函数关系是.(1)求该商品上市第天的日销售金额;(2)求这个商品的日销售金额的最大值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】由求出,结合不等式性质即可求解.【详解】,,,在第四象限.故选:D2、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.3、A【解析】根据题意,对题目中的命题进行分析,判断正误即可.【详解】对于①,根据任意角的概念知,第二象限角不一定大于第一象限角,①错误;对于②,根据角的定义知,不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关,②正确;对于③,若,则与的终边相同,或关于轴对称,③错误;对于④,若,则是第二或第三象限的角,或终边在负半轴上,④错误;综上,其中正确命题是②,只有个.故选:【点睛】本题考查真假命题的判断,考查三角函数概念,属于基础题.4、C【解析】①当,,且,则,反之当,必有.②当,,且,则,反之,若,则,,所以.③当,则;反之,,.综上所述,“存在集合使得是“”的充要条件.考点:集合与集合的关系,充分条件与必要条件判断,容易题.5、A【解析】由题意可得:本题选择A选项.6、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.7、B【解析】利用指数函数与对数函数的单调性分别求出的范围,即可得结果.【详解】根据指数函数的单调性可得,根据对数函数的单调性可得,则,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.8、A【解析】由已知利用诱导公式求得,进一步求得,再利用三角函数的基本关系式,即可求解【详解】由题意,得,又由为第二象限角,所以,所以故选:A.9、B【解析】根据图象关于坐标原点对称的函数是奇函数,结合奇函数的性质进行判断即可.【详解】因为图象关于坐标原点对称的函数是奇函数,所以有:A:函数y=xB:设f(x)=x3,因为C:设g(x)=x,因为g(-x)=D:因为当x=0时,y=1,所以该函数的图象不过原点,因此不是奇函数,不符合题意,故选:B10、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质11、C【解析】根据函数的单调性得到关于k的不等式组,解出即可【详解】解:f(x)==1+,若f(x)在(﹣2,+∞)上单调递增,则,故k≤﹣2,故选:C12、B【解析】,有当时函数为减函数是定义在上的偶函数即故选二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、-2【解析】利用余弦的二倍角公式和正切的商数关系可得答案.【详解】.故答案为:.14、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题15、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:16、-1【解析】根据题中条件可先排除①,②两个图象,然后根据③,④两个图象都经过原点可求出a的两个值,再根据二次函数图象的开口方向就可确定a的值.【详解】∵b>0∴二次函数的对称轴不能为y轴,∴可排除掉①,②两个图象∵③,④两个图象都经过原点,∴a2﹣1=0,∴a=±1∵当a=1时,二次函数图象的开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故答案为:-1【点睛】本题考查了二次函数的图象和性质,做题时注意题中条件的利用,合理地利用排除法解决选择题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)先求出集合,再按照并集和补集计算即可;(2)先求出,再由求出a取值范围即可.【小问1详解】,,;【小问2详解】,由题得故.18、(1)(2)最大值为2,最小值为【解析】(1)利用三角恒等变换化简可得,根据正弦型函数的单调性计算即可得出结果.(2)由得,利用正弦函数的图像和性质计算即可得出结果.【小问1详解】令,得,所以的单调增区间为【小问2详解】由得,所以当,即时,取最大值2;当,即时,取最小值.19、(1)(2)直线AB和OP一定平行.证明见解析【解析】由已知中圆C过点,且圆M:关于直线对称,可以求出圆心坐标,即可求出圆C的方程;由已知可得直线PA和直线PB的斜率存在,且互为相反数,设PA:,PB:,求出A,B坐标后,代入斜率公式,判断直线OP和AB斜率是否相等,即可得到答案【详解】由题意可得点C和点关于直线对称,且圆C和圆M的半径相等,都等于r设,由且,解得:,故原C的方程为再把点代入圆C的方程,求得故圆的方程为:;证明:过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线PA和直线PB斜率存在,且互为相反数,故可设PA:,PB:由,得,因为的横坐标一定是该方程的解,,同理可得由于AB的斜率的斜率,所以直线AB和OP一定平行【点睛】本题主要考查了直线和圆的方程的应用,关于直线对称的圆的方程,其中根据已知条件求出圆C的方程是解答本题的关键,考查推理与运算能力,属于中档题20、(1);(2)在上是减函数,证明见解析【解析】(1)根据奇函数的定义即可求出结果;(2)设,且,然后与,作差,通过因式分解判断正负,然后根据单调性的概念即可得出结论.【详解】(1)∵是定义在上的奇函数,∴,∴,此时,,是奇函数,满足题意∴(2),在上是减函数设,且,则,∵,∴,,,∴,即,∴在上是减函数21、(1);(2)当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大.【解析】(1)根据题意,可分别求得甲、乙两个大棚的资金投入值,代入解析式即可求得总收益.(2)表示出总收益的表达式,并求得自变量取值范围,利用换元法转化为二次函数形式,即可确定最大值.【详解】(1)当甲大棚的资金投入为50万元时,乙大棚资金投入为150万元,则由足,可得总收益为万元;(2)根据题意,可知总收益为满足,解得,令,所以,因为,所以当即时总收益最大,最大收益为万元,所以当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大,最大收益为282万元.【点睛】本题考查了函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论