版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古乌海市第四中学2023年数学九上期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图为二次函数的图象,则下列说法:①;②;③;④;⑤,其中正确的个数为()A.1 B.2 C.3 D.42.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',以下说法中错误的是(
)A.△ABC∽△A'B'C' B.点C、点O、点C'三点在同一直线上 C.AO:AA'=1∶2 D.AB∥A'B'3.2019年教育部等九部门印发中小学生减负三十条:严控书面作业总量,初中家庭作业不超过90分钟.某初中学校为了尽快落实减负三十条,了解学生做书面家庭作业的时间,随机调查了40名同学每天做书面家庭作业的时间,情况如下表.下列关于40名同学每天做书面家庭作业的时间说法中,错误的是()书面家庭作业时间(分钟)708090100110学生人数(人)472072A.众数是90分钟 B.估计全校每天做书面家庭作业的平均时间是89分钟C.中位数是90分钟 D.估计全校每天做书面家庭作业的时间超过90分钟的有9人4.如图,已知点是反比例函数的图象上一点,轴于,且的面积为3,则的值为()A.4 B.5 C.6 D.75.已知函数的图象经过点P(-1,4),则该图象必经过点()A.(1,4) B.(-1,-4) C.(-4,1) D.(4,-1)6.将一元二次方程配方后所得的方程是()A. B.C. D.7.如图,△ABC的顶点都在方格纸的格点上,那么的值为()A. B. C. D.8.在双曲线的每一分支上,y都随x的增大而增大,则k的值可以是()A.2 B.3 C.0 D.19.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为()A. B. C. D.10.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.12.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第_________个图形有94个小圆.13.如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是______.14.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为__________.15.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.16.已知在反比例函数图象的任一分支上,都随的增大而增大,则的取值范围是______.17.计算:2sin245°﹣tan45°=______.18.如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为_____.三、解答题(共66分)19.(10分)解方程:(l)(2)(配方法).20.(6分)已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为.
(1)如图1,分别求的值;(2)如图2,点为第一象限的抛物线上一点,连接并延长交抛物线于点,,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,,过点作的平行线,交轴于点,求直线的解析式.21.(6分)如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x(1)求出y与x的函数关系式(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.23.(8分)如图,在平行四边形中,过点作垂足为.连接为线段上一点,且.求证:.24.(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(10分)如图,某数学兴趣小组为测量一棵古树BH和教学楼的高,先在点处用高1.5米的测角仪测得古树顶端点的仰角为,此时教学楼顶端点恰好在视线上,再向前走7米到达点处,又测得教学楼顶端点的仰角为,点、、点在同一水平线上.(1)计算古树的高度;(2)计算教学楼的高度.(结果精确到0.1米,参考数据:,).26.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据抛物线的开口向下可知a<0,由此可判断①;根据抛物线的对称轴可判断②;根据x=1时y的值可判断③;根据抛物线与x轴交点的个数可判断④;根据x=-2时,y的值可判断⑤.【详解】抛物线开口向下,∴a<0,故①错误;∵抛物线与x轴两交点坐标为(-1,0)、(3,0),∴抛物线的对称轴为x==1,∴2a+b=0,故②正确;观察可知当x=1时,函数有最大值,a+b+c>0,故③正确;∵抛物线与x轴有两交点坐标,∴△>0,故④正确;观察图形可知当x=-2时,函数值为负数,即4a-2b+c<0,故⑤正确,故选D.【点睛】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.2、C【分析】直接利用位似图形的性质进而分别分析得出答案.【详解】解:∵以点O为位似中心,把△ABC放大为原图形的2倍得到△A'B'C',∴△ABC∽△A'B'C',点O、C、C'共线,AO:OA'=BO:OB'=1:2,∴AB∥A'B',AO:OA'=1:1.∴A、B、D正确,C错误.故答案为:C.【点睛】本题主要考查了位似变换,正确把握位似图形的性质是解题的关键.3、D【分析】利用众数、中位数及平均数的定义分别确定后即可得到本题的正确的选项.【详解】解:A、书面家庭作业时间为90分钟的有20人,最多,故众数为90分钟,正确;B、共40人,中位数是第20和第21人的平均数,即=90,正确;C、平均时间为:×(70×4+80×7+90×20+100×8+110)=89,正确;D、随机调查了40名同学中,每天做书面家庭作业的时间超过90分钟的有8+1=9人,故估计全校每天做书面家庭作业的时间超过90分钟的有9人说法错误,故选:D.【点睛】本题考查了众数、中位数及平均数的定义,属于统计基础题,比较简单.4、C【分析】根据反比例函数的几何意义解答即可【详解】解:设A点坐标为(a,b),由题意可知:AB=a,OB=b因为∴ab=6将(a,b)带入反比例函数得:解得:故本题答案为:C【点睛】本题考查了反比例函数的图像与性质和三角形的基本概念5、A【解析】把P点坐标代入二次函数解析式可求得a的值,则可求得二次函数解析式,再把选项中所给点的坐标代入判断即可;【详解】∵二次函数的图象经过点P(-1,4),∴,解得a=4,∴二次函数解析式为;当x=1或x=-1时,y=4;当x=4或x=-4时,y=64;故点(1,4)在抛物线上;故选A.【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象上点的坐标特征是解题的关键.6、B【分析】严格按照配方法的一般步骤即可得到结果.【详解】∵,∴,∴,故选B.【点睛】解答本题的关键是掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7、D【分析】把∠A置于直角三角形中,进而求得对边与斜边之比即可.【详解】解:如图所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故选D.【点睛】本题考查了锐角三角函数的定义;合理构造直角三角形是解题关键.8、C【分析】根据反比例函数的性质:当k-1<0时,在每一个象限内,函数值y随着自变量x的增大而增大作答.【详解】∵在双曲线的每一条分支上,y都随x的增大而增大,∴k-1<0,∴k<1,故选:C.【点睛】本题考查了反比例函数的性质.对于反比例函数,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.9、B【分析】连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M,根据旋转的性质,证明,再根据所在的象限,即可确定点的坐标.【详解】如图连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M∵点绕坐标原点顺时针旋转后得到点∴∴∴,∴∵∴∵∴∵在第四象限∴点的坐标为故答案为:B.【点睛】本题考查了坐标轴的旋转问题,掌握旋转的性质是解题的关键.10、B【解析】根据中心对称图形的定义“是指在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合的图形”和轴对称图形的定义“是指平面内,一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形”逐项判断即可.【详解】A、既不是中心对称图形,也不是轴对称图形,此项不符题意B、既是中心对称图形,又是轴对称图形,此项符合题意C、是轴对称图形,但不是中心对称图形,此项不符题意D、是中心对称图形,但不是轴对称图形,此项不符题意故选:B.【点睛】本题考查了中心对称图形的定义和轴对称图形的定义,这是常考点,熟记定义是解题关键.二、填空题(每小题3分,共24分)11、.【详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.12、9.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第1个图形中小圆的个数为21;则知第n个图形中小圆的个数为n(n+1)+1.依此列出方程即可求得答案.【详解】解:设第n个图形有91个小圆,依题意有n2+n+1=91即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有91个小圆.故答案为:9【点睛】本题考查(1)、一元二次方程的应用;(2)、规律型:图形的变化类.13、【分析】先设一个阴影部分的面积是x,可得整个阴影面积为3x,整个图形的面积是7x,再根据几何概率的求法即可得出答案.【详解】设一个阴影部分的面积是x,∴整个阴影面积为3x,整个图形的面积是7x,∴这个点取在阴影部分的概率是=,故答案为:【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14、【分析】设一双为红色,另一双为绿色,画树状图得出总结果数和恰好两只手套凑成同一双的结果数,利用概率公式即可得答案.【详解】画树状图如下:∵共有6种可能情况,恰好两只手套凑成同一双的情况有2种,∴恰好两只手套凑成同一双的概率为,故答案为:【点睛】本题考查用列表法或树状图法求概率,熟练掌握概率公式是解题关键.15、2-2【解析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【详解】如图:取点D关于直线AB的对称点D′,以BC中点O为圆心,OB为半径画半圆,连接OD′交AB于点P,交半圆O于点G,连BG,连CG并延长交AB于点E,由以上作图可知,BG⊥EC于G,PD+PG=PD′+PG=D′G,由两点之间线段最短可知,此时PD+PG最小,∵D′C’=4,OC′=6,∴D′O=,∴D′G=-2,∴PD+PG的最小值为-2,故答案为-2.【点睛】本题考查了轴对称的性质、直径所对的圆周角是直角、线段和的最小值问题等,综合性较强,能灵活利用相关知识正确添加辅助线是解题的关键.通常解此类问题都是将线段之和转化为固定两点之间的线段和最短.16、【分析】根据反比例函数的图象与性质即可求出k的范围.【详解】解:由题意可知:,
∴,故答案为:.【点睛】本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.17、0【解析】原式==0,故答案为0.18、【解析】连接AC,与对称轴交于点P,此时DE+DF最小,求解即可.【详解】连接AC,与对称轴交于点P,此时DE+DF最小,点D、E、F分别是BC、BP、PC的中点,在二次函数y=x2+2x﹣3中,当时,当时,或即点P是抛物线对称轴上任意一点,则PA=PB,PA+PC=AC,PB+PC=DE+DF的最小值为:故答案为【点睛】考查二次函数图象上点的坐标特征,三角形的中位线,勾股定理等知识点,找出点P的位置是解题的关键.三、解答题(共66分)19、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解.【详解】解:(1),,,∴或,所以;(2)∵,∴,即,则,∴.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20、(1),;(2);(3).【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)作轴于K,轴于L,OD=3OE,则OL=3OK,DL=3KE,设点E的横坐标为t,则点D的横坐标为-3t,则点E、D的坐标分别为:(t,)、(-3t,-+3t+),即可求解;(3)设点的横坐标为,可得PH=m2+m-,过作EF∥y轴交于点交轴于点,TE=PH+YE=m2+m-+2=(m+1)2,tan∠AHE=,tan∠PET=,而∠AHE+∠EPH=2α,故∠AHE=∠PET=∠EPH=α,PH=PQ•tanα,即m2+m-=(2m+2)×,解得:m=2-1,故YH=m+1=2,PQ=4,点P、Q的坐标分别为:(2-1,4)、(-2-1,4),tan∠YHE=,tan∠PQH=;证明△PMH≌△WNH,则PH=WH,而QH=2PH,故QW=HW,即W是QH的中点,则W(-1,2),再根据待定系数法即可求解.【详解】解:(1)把、分别代入得:,解得;(2)如图2,由(1)得,作轴于K,轴于L,∴EK∥DL,∴.∵,∴,设点的横坐标为,,,∴的横坐标为,分别把和代入抛物线解析式得,∴,∴,.∵,∴,∴,∴,∴,解得(舍),,∴.(3)如图3,设点的横坐标为,把代入抛物线得,∴.过作EF∥y轴交于点交轴于点,∴轴.∵点与点关于抛物线的对称轴对称,∴PQ∥x轴,,∴,点坐标为,又∵轴,∴ET∥PH,∴,∴,∴四边形为矩形,∴,∴,∴,,,∴.∴,,∴,∴.又∵,∴.∵,∴解得,∵,∴.∴,,把代入抛物线得,∴,∴,∴,∴,∴,∴,∴.若交于点,∵NF∥PE,∴,∴,∵,∴,∴,,,∴,∴,∴.作WS∥PQ,交于点交轴于点,∴△WSH∽△QPH,∴.∵∴,∴,,∴.∵,∴,∴.设的解析式为,把、代入得,解得,∴.∵FN∥PE,∴设的解析式为,把代入得,∴的解析式为.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、三角形全等、解直角三角形等,其中(3)证明△PMH≌△WNH是解题的关键.21、1米.【分析】过A作AE⊥CD垂足为E,设AE=x米,再利用锐角三角函数关系得出BE=x,CE=x,根据BC=BE﹣CE,得到关于x的方程,即可得出答案.【详解】解:过A作AE⊥CD垂足为E,设AE=x米,在Rt△ABE中,tan∠B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE﹣CE,∴x﹣x=150,解得:x=1.答:小岛A到公路BD的距离为1米.【点睛】本题考查了三角函数和一元一次方程的问题,掌握特殊三角函数值和解一元一次方程的方法是解题的关键.22、(1)当1≤x<50时,y=﹣2x2+180x+2000,当50≤x≤90时,y=﹣120x+12000;(2)第45天时,当天销售利润最大,最大利润是6050元;(3)该商品在销售过程中,共41天每天销售利润不低于4800元.【解析】试题分析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.试题解析:(1)当1≤x<50时,y=(x+40﹣30)(200-2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200-2x)=﹣120x+12000;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.23、详见解析【分析】根据平行四边形的性质可得∠B+∠C=180°,∠ADF=∠DEC,结合∠AFD+∠AFE=180°,,即可得出∠AFD=∠C,进而可证出△ADF∽△DEC【详解】解:四边形是平行四边形,,,.∴△ADF∽△DEC.【点睛】本题考查了相似三角形的判定及平行四边形的性质.解题的关键是根据平行四边形的性质结合角的计算找出∠ADF=∠DEC,∠AFD=∠C.24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=6,7,8;则(10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业资产转让协议案例
- 协议离婚中的财产分配协议
- 医疗机构互惠合作协议
- 2024年工程建设项目咨询服务合同
- 事业单位员工停薪留职合同范本2024年
- 2024年场地租赁协议
- 2024年养殖设备租赁合同
- 代理证券投资合作协议示范
- 企业投资合作意向协议范本
- 土墙工程承包合同专业版
- GB/T 14194-2017压缩气体气瓶充装规定
- 2023年湖南建筑工程初中级职称考试基础知识
- 金属清洗剂安全技术说明(MSDS)
- 作文启蒙篇:第1课优秀课件
- 结构力学求解器使用教程
- 幼儿园中班语言活动《猜猜我有多爱你》课件
- 卵圆孔未闭和脑卒中课件
- 小学数学西南师大三年级上册四两位数除以一位数的除法解决问题(进一法)
- 公司燃气锅炉技术规范书
- 文化馆建筑设计任务书
- (中职)数控编程与操作教程全册电子教案
评论
0/150
提交评论