版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏中学卫市宣和中学2023-2024学年九年级数学第一学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限2.将抛物线向左平移个单位长度,再向.上平移个单位长度得到的抛物线的解析式为()A. B.C. D.3.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米 C.30tanα米 D.30cosα米4.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点5.中国在夏代就出现了相当于砝码的“权”,此后的多年间,不同朝代有不同形状和材质的“权”作为衡量的量具.下面是一个“”形增砣砝码,其俯视图如下图所示,则其主视图为()A. B. C. D.6.下列图形,是轴对称图形,但不是中心对称图形的是()A. B. C. D.7.如图,双曲线的一个分支为()A.① B.② C.③ D.④8.如图,AB是⊙O的直径,弦CD交AB于点E,且E是CD的中点,∠CDB=30°,CD=6,则阴影部分面积为()A.π B.3π C.6π D.12π9.二次函数与坐标轴的交点个数是()A.0个 B.1个 C.2个 D.3个10.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A. B. C. D.11.小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A. B. C. D.12.计算的值是()A. B. C. D.二、填空题(每题4分,共24分)13.若关于x的一元二次方程有两个相等的实数根,则m的值为_________.14.若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_____cm1.15.如图是圆心角为,半径为的扇形,其周长为_____________.16.某地区2017年投入教育经费2500万元,2019年计划投入教育经费3025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.17.若方程x2﹣2x﹣4=0的两个实数根为a,b,则-a2-b2的值为_________。18.边长为4cm的正三角形的外接圆半径长是_____cm.三、解答题(共78分)19.(8分)用适当的方法解方程(1)4(x-1)2=9(2)20.(8分)已知,关于的方程的两个实数根.(1)若时,求的值;(2)若等腰的一边长,另两边长为、,求的周长.21.(8分)在平面直角坐标系中,抛物线经过点,.(1)求这条抛物线所对应的函数表达式.(2)求随的增大而减小时的取值范围.22.(10分)解方程(1)2x2﹣6x﹣1=0(2)(x+5)2=6(x+5)23.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AD交AB于E,EF∥BC交AC于F.(1)求证:△ACD∽△ADE;(2)求证:AD2=AB•AF;(3)作DG⊥BC交AB于G,连接FG,若FG=5,BE=8,直接写出AD的长.24.(10分)为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875八年级7880.5应用数据:(1)由上表填空:a=,b=,c=,d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.25.(12分)如图,已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交直线于点,连接、.设点的横坐标为,的面积为.求关于的函数解析式及自变量的取值范围,并求出的最大值;(3)已知为抛物线对称轴上一动点,若是以为直角边的直角三角形,请直接写出点的坐标.26.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=1.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:反比例函数的图象经过点,求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K〈0时反比例函数的图象在第二、四象限,因为-2〈0,D正确.故选D考点:反比例函数的图象的性质.2、B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向左平移4个单位长度得点(0,-4),再向上平移1个单位长度得到点(-4,1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线先向左平移个单位长度,得到的抛物线解析式为,再向上平移个单位长度得到的抛物线解析式为,故选:.【点睛】本题考查的是抛物线平移,根据抛物线平移规律“左移加右移减,上移加下移减”写出平移后的抛物线解析式.需要注意左平移是加,右平移是减.3、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.4、B【详解】二次函数,所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为-3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.5、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看中间的矩形的左右两边是虚的直线,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6、A【解析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C.是轴对称图形,是中心对称图形,不符合题意;D.是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.7、D【解析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.8、D【解析】根据题意得出△COB是等边三角形,进而得出CD⊥AB,再利用垂径定理以及锐角三角函数关系得出CO的长,进而结合扇形面积求出答案.【详解】解:连接BC,∵∠CDB=30°,∴∠COB=60°,∴∠AOC=120°,又∵CO=BO,∴△COB是等边三角形,∵E为OB的中点,∴CD⊥AB,∵CD=6,∴EC=3,∴sin60°×CO=3,解得:CO=6,故阴影部分的面积为:=12π.故选:D.【点睛】此题主要考查了垂径定理以及锐角三角函数和扇形面积求法等知识,正确得出CO的长是解题关键.9、B【分析】先计算根的判别式的值,然后根据b2−4ac决定抛物线与x轴的交点个数进行判断.【详解】∵△=22−4×1×2=−4<0,∴二次函数y=x2+2x+2与x轴没有交点,与y轴有一个交点.∴二次函数y=x2+2x+2与坐标轴的交点个数是1个,故选:B.【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数;△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.10、C【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.【详解】如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选C.【点睛】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a与邻边b的比叫做∠A的正切.11、A【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【详解】解:画树状图得:
∵共有9种等可能的结果,小华获胜的情况数是3种,
∴小华获胜的概率是:=.
故选:A.【点睛】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.12、A【解析】先算cos60°=,再计算即可.【详解】∵∴故答案选A.【点睛】本题考查特殊角的三角函数值,能够准确记忆60°角的余弦值是解题的关键.二、填空题(每题4分,共24分)13、0【分析】根据一元二次方程根的判别式的正负判断即可.【详解】解:原方程可变形为,由题意可得所以故答案为:0【点睛】本题考查了一元二次方程,掌握根的判别式与一元二次方程的根的情况是解题的关键.14、15【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、【分析】先根据弧长公式算出弧长,再算出周长.【详解】弧长=,周长==.故答案为:.【点睛】本题考查弧长相关的计算,关键在于记住弧长公式.16、10%【解析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.17、-12【分析】根据一元二次方程的解及根与系数的关系,得出两根之和与两根之积,再将待求式利用完全平方公式表示成关于两根之和与两根之积的式子,最后代入求值即可.【详解】解:∵方程x2﹣2x﹣4=0的两个实数根为,∴,∴=-4-8=-12.故答案为:-12.【点睛】本题考查了根与系数的关系以及一元二次方程的解,将待求式利用完全平方公式表示成关于两根之和与两根之积的式子是解题的关键.18、.【分析】经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C.连接OA,则在直角△OAC中,∠O=.OC是边心距r,OA即半径R.AB=2AC=a.根据三角函数即可求解.【详解】解:连接中心和顶点,作出边心距.那么得到直角三角形在中心的度数为:360°÷3÷2=60°,那么外接圆半径是4÷2÷sin60°=;故答案为:.【点睛】本题考查了等边三角形、垂径定理以及三角函数的知识,解答的关键在于做出辅助线、灵活应用勾股定理.三、解答题(共78分)19、(1),;(2),【分析】(1)先在方程的两边同时除以4,再直接开方即可;(2)将常数项移到等式的右边,再两边配上一次项系数的一半可得.【详解】(1)解:∴,,(2)解:∴,.【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法的基本步骤是解题的关键.20、(1)30;(2)1【分析】(1)若k=3时,方程为x2-1x+6=0,方法一:先求出一元二次方程的两根a,b,再将a,b代入因式分解后的式子计算即可;方法二:利用根与系数的关系得到a+b=1,ab=6,再将因式分解,然后利用整体代入的方法计算;(2)分1为底边和1为腰两种情况讨论即可确定等腰三角形的周长.【详解】解:(1)将代入原方程,得:.方法一:解上述方程得:因式分解,得:.代入方程的解,得:.方法二:应用一元二次方程根与系数的关系因式分解,得:,由根与系数的关系,得,则有:.(2)①当与其中一个相等时,不妨设,将代回原方程,得.解得:,此时,不满足三角形三边关系,不成立;②当时,,解得:,解得:,.综上所述:△ABC的周长为1.【点睛】本题考查了根的判别式,根与系数的关系,三角形的三边关系,等腰三角形的定义,解题的关键是熟知两根之和、两根之积与系数的关系.21、(1),(2)随的增大而减小时.【解析】(1)把,代入解析式,解方程组求出a、b的值即可;(2)根据(1)中所得解析式可得对称轴,a>0,在对称轴左侧y随的增大而减小根据二次函数的性质即可得答案.【详解】(1)∵抛物线经过点,.∴解得∴这条抛物线所对应的函数表达式为.(2)∵抛物线的对称轴为直线,∵,∴图象开口向上,∴y随的增大而减小时x<1.【点睛】本题考查待定系数法确定二次函数解析式及二次函数的性质,a>0,开口向上,在对称轴左侧y随的增大而减小,a<0,开口向下,在对称轴右侧y随的增大而减小,熟练掌握二次函数的图像和性质是解题关键.22、(1);(2)x=﹣5或x=1.【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)∵a=2,b=﹣6,c=﹣1,∴△=(﹣6)2﹣4×2×(﹣1)=44>0,则x;(2)∵(x+5)2﹣6(x+5)=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得:x=﹣5或x=1.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.23、(1)见解析;(2)见解析;(3)【分析】(1)根据两角对应相等两三角形相似即可证明.(2)证明△BAD∽△DAF可得结论.(3)求出AB,AF,代入AD2=AB•AF,即可解决问题.【详解】(1)证明:∵DA平分∠BAC,∴∠CAD=∠DAE,∵DE⊥AD,∴∠ADE=∠C=90°,∴△ACD∽△ADE.(2)证明:连接DF.∵EF∥BC,∴∠AFE=∠C=90°,∠AEF=∠B,∵∠ADE=∠AFE=90°,∴A,E,D,F四点共圆,∴∠ADF=∠AEF,∴∠B=∠ADF,∴∠DAB=∠DAF,∴△BAD∽△DAF,∴,∴AD2=AB•AF.(3)设DG交EF于O.∵DG⊥BC,AC⊥BC,∴DG∥AC,∴∠ADG=∠DAC=∠DAG,∴AG=GD,∵∠AED+∠EAD=90°,∠EDG+∠ADG=90°,∴∠GED=∠GDE,∴DG=EG=AG,∵∠AFE=90°,∴FG=EG=AG=DG=5,∵OE∥BD,∴,∴,∴OG=,∴OG∥AF.EG=AG,∴OE=OF,∴AF=2OG=,∴AD2=AB•AF=18×,∵AD>0,∴AD=.【点睛】本题考查相似三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题.24、(1)11,10,78,81;(2)90人;(3)八年级的总体水平较好【解析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【详解】解:(1)由题意知,将七年级成绩重新排列为:59,70,71,73,75,75,75,75,76,1,79,79,80,80,81,83,85,86,87,94,∴其中位数,八年级成绩的众数,故答案为:11,10,78,81;(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有(人);(3)八年级的总体水平较好,∵七、八年级的平均成绩相等,而八年级的中位数大于七年级的中位数,∴八年级得分高的人数相对较多,∴八年级的学生对经典文化知识掌握的总体水平较好(答案不唯一,合理即可).【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.25、(1);(2),当时,有最大值,最大值;(2),【解析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x-2),将点C(0,2)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)设直线BC的函数解析式为y=kx+b.结合点B、点C的坐标利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m找出点D、点E的坐标,结合两点间的距离公式以及三角形的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 思维类课程设计
- 《基于秸秆热转化冷热电多联产模式研究》
- 中国传统节日习俗解读
- 从行业趋势到企业战略的制定与执行汇报指导
- 天坛研学课程设计
- 医院药房自动化设备应用
- 互联网思维在企业管理中的应用研究进展
- 《ZG建工有限公司供应链融资研究》
- 《利用速生杨木开发实木休闲椅的研究》
- 2024-2030年中国汽车维修行业竞争趋势及投资策略分析报告
- 河南省焦作市2023-2024学年七年级上学期期末语文试题
- 施工进度计划及保证措施(完整版)
- 医疗器械税务筹划
- 生物化学(华南农业大学)智慧树知到期末考试答案2024年
- MOOC 技术经济学-西安建筑科技大学 中国大学慕课答案
- 人教版一年级上册数学专项练习-计算题50道含答案(综合卷)
- 高水平行业特色型大学核心竞争力评价与培育研究的开题报告
- 2023年急诊科护士长年终工作总结报告
- 2024年中国消防救援学院招聘笔试参考题库附带答案详解
- 临床用血知识培训课件
- 【基于价值链探析的战略成本管理探究:以长城汽车为例9400字】
评论
0/150
提交评论