山东菏泽市曹县2024届数学八上期末调研试题含解析_第1页
山东菏泽市曹县2024届数学八上期末调研试题含解析_第2页
山东菏泽市曹县2024届数学八上期末调研试题含解析_第3页
山东菏泽市曹县2024届数学八上期末调研试题含解析_第4页
山东菏泽市曹县2024届数学八上期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东菏泽市曹县2024届数学八上期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A. B.C. D.2.若关于的不等式的整数解共有个,则的取值范围是()A. B. C. D.3.已知,等腰三角形的一条边长等于6,另一条边长等于3,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或154.如图,在中,,点在上,于点,的延长线交的延长线于点,则下列结论中错误的是()A. B. C. D.5.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为()A.(b,a) B.(﹣a,b) C.(a,﹣b) D.(﹣a,﹣b)6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1 B.2C.3 D.47.下列各式不能运用平方差公式计算的是()A. B.C. D.8.今年植树节,某校甲、乙两班学生参加植树活动.已知甲班每小时比乙班少植棵树,甲班植棵树所用时间与乙班植棵树所用时间相同.若设甲班每小时植树棵,则根据题意列出方程正确的是()A. B. C. D.9.如图,若,,添加下列条件不能直接判定的是()A. B.C. D.10.如图是两个全等的三角形纸片,其三边长之比为,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该项点所在两边重合,记折叠后不重叠部分面积分别为,已知,则纸片的面积是()A. B. C. D.二、填空题(每小题3分,共24分)11.若关于的方程的解为正数,则的取值范围是_______.12.分解因式:__________.13.ax=5,ay=3,则ax﹣y=_____.14.如图,直线上有三个正方形,若的面积分别为5和11,则的面积为__________.15.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,那么的值是____.16.已知直角三角形的两条直角边分别为5和12,则其斜边上的中线长为_____.17.若,则的值是__________.18.将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.三、解答题(共66分)19.(10分)如图①,将一个长方形沿着对角线剪开即可得到两个全等的三角形,再把△ABC沿着AC方向平移,得到图②中的△GBH,BG交AC于点E,GH交CD于点F.在图②中,除△ACD与△HGB全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.20.(6分)随着智能分拣设备在快递业务中的普及,快件分拣效率大幅提高.使用某品牌智能分拣设备,每人每小时分拣的快件量是传统分拣方式的25倍,经过测试,由5人用此设备分拣8000件快件的时间,比20人用传统方式分拣同样数量的快件节省4小时.某快递中转站平均每天需要分拣10万件快件,如果使用此智能分拣设备,每天只需要安排多少名工人就可以完成分拣工作(每天工作时间为8小时).21.(6分)如图,在平面直角坐标系中,点,点,直线交轴于点.(1)求直线的表达式和点的坐标;(2)在直线上有一点,使得的面积为4,求点的坐标.22.(8分)解分式方程:.23.(8分)如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,(1)求证:△ABQ≌△CAP;(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)连接PQ,当点P、Q运动多少秒时,△APQ是等腰三角形?24.(8分)第7届世界军人运动会于2019年10月18日在武汉开幕,为备战本届军运会,某运动员进行了多次打靶训练,现随机抽取该运动员部分打靶成绩进行整理分析,共分成四组:(优秀)、(良好)、(合格)、(不合格),绘制了如下不完整的统计图:根据以上信息,解答下列问题:(1)直接写出本次统计成绩的总次数和图中的值.(2)求扇形统计图中(合格)所对应圆心角的度数.(3)请补全条形统计图.25.(10分)如图,在的网格纸中,每个小正方形的边长都为1,动点,分别从点,点同时出发向右移动,点的运动速度为每秒2个单位,点的运动速度为每秒1个单位,当点运动到点时,两个点同时停止运动.(1)当运动时间为3秒时,请在网格纸图中画出线段,并求其长度.(2)在动点,运动的过程中,若是以为腰的等腰三角形,求相应的时刻的值.26.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口490的普通公路升级成了比原来长度多35的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2,求公路升级以后汽车的平均速度

参考答案一、选择题(每小题3分,共30分)1、D【分析】由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.【详解】解:设他第一次买了x本资料,则这次买了(x+20)本,根据题意得:.故选:D.【点睛】此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.2、D【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【详解】解不等式,由①式得,,由②式得,即故的取值范围是,故选D.【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.3、C【分析】由于不知道已知边是底还是腰,进行分类讨论,并判断是否构成三角形,再求周长即可.【详解】解:等腰三角形的一条边长等于6,另一条边长等于3,①当腰为6时,三角形的周长为:6+6+3=1;②当腰为3时,3+3=6,三角形不成立;∴该等腰三角形的周长是1.故答案为C.【点睛】本题考查了等腰三角形的概念和三角形的三边关系,对等腰三角形的边分类讨论和应用三角形三边关系判断是否构成三角形是解题的关键,也是解题的易错点.4、A【分析】由题意中点E的位置即可对A项进行判断;过点A作AG⊥BC于点G,如图,由等腰三角形的性质可得∠1=∠2=,易得ED∥AG,然后根据平行线的性质即可判断B项;根据平行线的性质和等腰三角形的判定即可判断C项;由直角三角形的性质并结合∠1=的结论即可判断D项,进而可得答案.【详解】解:A、由于点在上,点E不一定是AC中点,所以不一定相等,所以本选项结论错误,符合题意;B、过点A作AG⊥BC于点G,如图,∵AB=AC,∴∠1=∠2=,∵,∴ED∥AG,∴,所以本选项结论正确,不符合题意;C、∵ED∥AG,∴∠1=∠F,∠2=∠AEF,∵∠1=∠2,∴∠F=∠AEF,∴,所以本选项结论正确,不符合题意;D、∵AG⊥BC,∴∠1+∠B=90°,即,所以本选项结论正确,不符合题意.故选:A.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.5、C【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(a,b),∴点B的坐标为(a,−b).故选:C.【点睛】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.6、B【解析】分析:根据题意点Q是射线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P作PQ垂直OM,此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ,利用已知的PA的值即可求出PQ的最小值.解答:解:过点P作PQ⊥OM,垂足为Q,则PQ为最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=2,故选B.7、C【分析】运用平方差公式时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】解:、两项都是相同的项,不能运用平方差公式;、、中均存在相同和相反的项,故选:.【点睛】本题考查了平方差公式的应用,熟记公式是解题的关键.8、A【分析】根据“甲班植棵树所用时间与乙班植棵树所用时间相同”列分式方程即可.【详解】解:由题意可得故选A.【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.9、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.【详解】A、添加条件AM=CN,仅满足SSA,不能判定两个三角形全等;

B、添加条件AB=CD,可用SAS判定△ABM≌△CDN;

C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;

D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.

故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、A【分析】设AC=FH=3x,则BC=GH=4x,AB=GF=5x,根据勾股定理即可求得CD的长,利用x表示出SA,同理表示出SB,根据,即可求得x的值,进而求得三角形的面积.【详解】解:如图,设AC=FH=3x,则BC=GH=4x,AB=GF=5x.设CD=y,则BD=4x-y,DE=CD=y,在直角△BDE中,BE=5x-3x=2x,根据勾股定理可得:4x2+y2=(4x-y)2,解得:y=x,则SA=BE•DE=×2x•x=x2,同理可得:SB=x2,∵SA-SB=10,∴x2-x2=10,∴x2=12,∴纸片的面积是:×3x•4x=6x2=1.故选A.【点睛】本题主要考查了折叠的性质,勾股定理,根据勾股定理求得CD的长是解题的关键.二、填空题(每小题3分,共24分)11、且【分析】根据分式方程的解法,解出x,再根据题意列出不等式求解即可.【详解】解:∵去分母得:解得:因为方程的解为正数,∴∴,又∵,∴∴,∴m的取值范围为:且故答案为:且.【点睛】本题考查了根据分式方程解的情况求分式方程中的参数,解题的关键是掌握分式方程的解法,并且注意分式方程增根的问题.12、【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点,再利用平方差公式分解因式.a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.13、【分析】将同底数幂的除法公式进行逆用即可【详解】解:∵ax=5,ay=3,∴ax﹣y=ax÷ay=5÷3=.故答案为:【点睛】本题考查了同底数幂除法公式的逆用,解答关键是根据公式将原式进行变形后解答问题.14、16【解析】运用正方形边长相等,再根据同角的余角相等可得∠ABC=∠DAE,然后证明△ΔBCA≌ΔAED,结合全等三角形的性质和勾股定理来求解即可.【详解】解:∵AB=AD,∠BCA=∠AED=90°,∴∠ABC=∠DAE,∴ΔBCA≌ΔAED(ASA),∴BC=AE,AC=ED,故AB²=AC²+BC²=ED²+BC²=11+5=16,即正方形b的面积为16.点睛:此题主要考查对全等三角形和勾股定理的综合运用,解题的重点在于证明ΔBCA≌ΔAED,而利用全等三角形的性质和勾股定理得到b=a+c则是解题的关键.15、1.【解析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a-b)2=a2-2ab+b2即可求解.【详解】解:根据勾股定理可得a2+b2=13,

四个直角三角形的面积是:ab×4=13-1=12,即:2ab=12,

则(a-b)2=a2-2ab+b2=13-12=1.

故答案为:1.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.16、6.1.【分析】利用勾股定理求出斜边,再利用直角三角形中,斜边上的中线等于斜边的一半,便可得到答案.【详解】解:斜边长为:故斜边上的中线为斜边的一半,故为6.1故答案为:6.1【点睛】本题考查勾股定理应用,以及直角三角形斜边上的中线为斜边的一半,掌握这两个知识点是解题的关键.17、49【分析】根据平方差公式把原式进行因式分解,把整体代入分解后的式子,化简后再次利用整体代入即可得.【详解】,原式,故答案为:49.【点睛】考查了“整体代换”思想在因式分解中的应用,平方差公式,熟记平方差公式,通过利用整体代入式解题关键.18、y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.三、解答题(共66分)19、△AGE≌△HCF,△EBC≌△FDG.【解析】分析:本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.三角形全等条件中必须是三个元素,并且一定有一组对应边相等.详解:△AGE≌△HCF,△EBC≌△FDG.选择证明△AGE≌△HCF,过程如下:由平移可知AG=CH.∵△ACD与△HGB全等,∴∠A=∠H.又BG⊥AD,DC⊥BH,∴∠AGE=∠HCF=90°,∴△AGE≌△HCF(ASA).点睛:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.20、每天只需要安排6名工人就可以完成分拣工作.【分析】设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,根据工作时间=工作总量÷工作效率结合5人用此设备分拣8000件快件的时间比20人用传统方式分拣同样数量的快件节省4小时,即可得出关于x的分式方程,解之经检验后即可得出x的值,再利用需要人数=工作总量÷每人每天用智能分拣设备后的工作量,即可求出结论(利用进一法取整).【详解】解:设用传统方式每人每小时可分拣x件,则用智能分拣设备后每人每小时可分拣25x件,依题意,得:,解得:x=84,经检验,x=84是原方程的解,且符合题意,∴100000÷(84×25×8)=5(人)……16000(件),∴5+1=6(人).答:每天只需要安排6名工人就可以完成分拣工作.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21、(1);;(2)【分析】(1)首先设直线AB的解析式为,然后将A、B两点坐标代入,即可得出解析式;当时,即可得出点C的坐标;(2)首先根据点A和O的坐标求出直线OA的解析式,然后分第一象限和第三象限设点P坐标,利用△BCP的面积构建方程即可得解.【详解】(1)设直线AB的解析式为将点,点代入解析式,得解得直线AB的解析式为当时,∴点C的坐标为(2)∵∴直线OA解析式为当P在第一象限时,设点P的坐标为,如图所示:由题意,得∵OB=4,OC=∴与在第一象限矛盾,故舍去;当P在第三象限时,设点P的坐标为,如图所示:由题意,得∴∴∴点P的坐标是.【点睛】此题主要考查平面直角坐标系与一次函数的综合应用以及坐标的求解,解题关键是求出直线解析式构建方程.22、原方程的解为【分析】根据解分式方程的步骤:去分母、解整式方程、验根、写结论解答即可.【详解】去分母得:去括号得:解得:经检验是原方程的解所以原方程的解为.【点睛】本题考查解分式方程,掌握解分式方程的步骤是基础,去分母时确定最简公分母是关键,注意不要漏乘.23、(1)证明见解析;(2)∠CMQ的大小不变且为60度;(3)t=2.【分析】(1)根据等边三角形的性质、三角形全等的判定定理证明;(2)根据全等三角形的性质得到∠BAQ=∠ACP,根据三角形的外角的性质解答;(3)分三种情况分别讨论即可求解.【详解】(1)根据路程=速度×时间可得:AP=BQ∵△ABC是等边三角形∴∠PAC=∠B=60°,AB=AC∴△ABQ≌△CAP(SAS)(2)∵△ABQ≌△CAP∴∠BAQ=∠ACP∴∠CMQ=∠ACM+∠MAC=∠BAQ+∠MAC=60°因此,∠CMQ的大小不变且为60度(3)当AP=AQ时,仅当P运动到B点,Q运动到C点成立,故不符合题意;当PQ=AQ时,仅当P运动到B点,Q运动到C点成立,故不符合题意;当AP=PQ时,如图,当AQ⊥BC时,AP=BP=PQ,故t=2÷1=2时,△APQ为等腰三角形;综上,当t=2时,△APQ为等腰三角形,此时AP=PQ.【点睛】本题考查的是全等三角形的判定、直径三角形的性质,掌握等边三角形的性质、灵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论