《5.7三角函数的应用》教案与导学案_第1页
《5.7三角函数的应用》教案与导学案_第2页
《5.7三角函数的应用》教案与导学案_第3页
《5.7三角函数的应用》教案与导学案_第4页
《5.7三角函数的应用》教案与导学案_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《第五章三角函数》《5.7三角函数的应用》教案【教材分析】本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力.【教学目标与核心素养】课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型;3.数学运算:实际问题求解;4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.【教学重难点】重点:了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题;难点:实际问题抽象为三角函数模型.【教学方法】:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。【教学过程】一、情景导入生活中普遍存在着周期性变化规律的现象,昼夜交替四季轮回,潮涨潮散、云卷云舒,情绪的起起落落,庭前的花开花谢,一切都逃不过数学的眼睛!这节课我们就来学习如何用数学的眼睛洞察我们身边存在的周期现象-----5.7三角函数模型的简单应用。要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本242-245页,思考并完成以下问题1.解三角函数应用题的基本步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。三、新知探究1.三角函数可以作为描述现实世界中周期现象的一种数学模型.其基本模型可化为y=Asin(ωx+φ)+B的形式.2.解三角函数应用题的基本步骤:(1)审清题意;(2)搜集整理数据,建立数学模型;(3)讨论变量关系,求解数学模型;(4)检验,作出结论.四、典例分析、举一反三题型一三角函数模型在物理学中的应用例1已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s(cm)随时间t(s)的变化规律为s=4sineq\b\lc\(\rc\)(\a\vs4\al\co1(2t+\f(π,3))),t∈[0,+∞).(1)用“五点法”作出这个函数的简图;(2)小球在开始振动(t=0)时的位移是多少?(3)小球上升到最高点和下降到最低点时的位移分别是多少?(4)经过多长时间小球往复振动一次?【答案】(1)略(2)2eq\r(3)cm.(3)小球上升到最高点和下降到最低点时的位移分别是4cm和-4cm.(4)πs.【解析】(1)列表如下:t-eq\f(π,6)eq\f(π,12)eq\f(π,3)eq\f(7π,12)eq\f(5π,6)2t+eq\f(π,3)0eq\f(π,2)πeq\f(3π,2)2πsineq\b\lc\(\rc\)(\a\vs4\al\co1(2t+\f(π,3)))010-10s040-40描点、连线,图象如图所示.(2)将t=0代入s=4sineq\b\lc\(\rc\)(\a\vs4\al\co1(2t+\f(π,3))),得s=4sineq\f(π,3)=2eq\r(3),所以小球开始振动时的位移是2eq\r(3)cm.(3)小球上升到最高点和下降到最低点时的位移分别是4cm和-4cm.(4)因为振动的周期是π,所以小球往复振动一次所用的时间是πs.解题技巧:(处理物理学问题的策略)处理物理学问题的策略(1)常涉及的物理学问题有单摆、光波、电流、机械波等,其共同的特点是具有周期性.(2)明确物理概念的意义,此类问题往往涉及诸如频率、振幅等概念,因此要熟知其意义并与对应的三角函数知识结合解题.跟踪训练一1.单摆从某点开始来回摆动,离开平衡位置的距离s(单位:cm)和时间t(单位:s)的函数关系式为s=6sineq\b\lc\(\rc\)(\a\vs4\al\co1(2πt+\f(π,6))).(1)当单摆开始摆动(t=0)时,离开平衡位置的距离是多少?(2)当单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需多长时间?【答案】(1)3cm;(2)6cm;(3)1s.【解析】(1)由s=6sineq\b\lc\(\rc\)(\a\vs4\al\co1(2πt+\f(π,6)))得t=0时,s=6sineq\f(π,6)=3(cm),所以单摆开始摆动时,离开平衡位置的距离是3cm;(2)由解析式知,振幅为6,∴单摆摆动到最右边时,离开平衡位置的距离是6cm;(3)T=eq\f(2π,ω)=eq\f(2π,2π)=1,即单摆来回摆动一次需1s.题型二三角函数模型的实际应用例2如图,某地一天从6~14时的温度变化曲线近似满足函数.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式【答案】(1);(2)∴。【解析】(1)由图可知:这段时间的最大温差是;(2)从图可以看出:从6~14是的半个周期的图象,∴∴∵,∴又∵∴∴将点代入得:,∴,∴,取,∴。解题技巧:(解三角函数应用问题的基本步骤)解三角函数应用问题的基本步骤提醒:关注实际意义求准定义域.跟踪训练二1.已知某海滨浴场的海浪高度y(m)是时间t(h)的函数,其中0≤t≤24,记y=f(t),下表是某日各时的浪高数据:t03691215182124y1.51.00.51.01.510.50.991.5经长期观测,y=f(t)的图象可近似地看成是函数y=Acosωt+b的图象.(1)根据以上数据,求其最小正周期,振幅及函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?【答案】(1)T=12,振幅为eq\f(1,2),函数解析式为y=eq\f(1,2)coseq\f(π,6)t+1(0≤t≤24).(2)在规定时间内只有6个小时冲浪爱好者可以进行活动,即9<t<15.【解析】(1)由表中数据可知,T=12,∴ω=eq\f(π,6).又t=0时,y=1.5,∴A+b=1.5;t=3时,y=1.0,得b=1.0,所以振幅为eq\f(1,2),函数解析式为y=eq\f(1,2)coseq\f(π,6)t+1(0≤t≤24).(2)∵y>1时,才对冲浪爱好者开放,∴y=eq\f(1,2)coseq\f(π,6)t+1>1,coseq\f(π,6)t>0,2kπ-eq\f(π,2)<eq\f(π,6)t<2kπ+eq\f(π,2),即12k-3<t<12k+3(k∈Z).又0≤t≤24,所以0≤t<3或9<t<15或21<t≤24,所以在规定时间内只有6个小时冲浪爱好者可以进行活动,即9<t<15.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计5.7三角函数的应用5.7三角函数的应用1.解题步骤例1例2七、作业课本249页习题5.7.【教学反思】以问题引导教学,让学生听有所思,思有所获,获有所感。问题串的设计,使学习内容在难度和强度上循序渐进而又螺旋上升,并通过互动逐一达成教学目标,突出重点,突破难点,较好的提高了课堂教学的有效性。《5.7三角函数的应用》导学案【学习目标】知识目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.核心素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型;3.数学运算:实际问题求解;4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.【重点与难点】重点:了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题;难点:实际问题抽象为三角函数模型.【学习过程】一、预习导入阅读课本242-245页,填写。1.三角函数可以作为描述现实世界中周期现象的一种数学模型.其基本模型可化为y=Asin(ωx+φ)+B的形式.2.解三角函数应用题的基本步骤:(1)审清题意;(2)搜集整理数据,建立数学模型;(3)讨论变量关系,求解数学模型;(4)检验,作出结论.【小试牛刀】1.电流I(A)随时间t(s)变化的关系是I=2sin100πt,t∈(0,+∞),则电流I变化的周期是()A.eq\f(1,100)B.100C.eq\f(1,50)D.502.如图所示,一个单摆以OA为始边,OB为终边的角θ(-π<θ<π)与时间t(s)满足函数关系式θ=eq\f(1,2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(2t+\f(π,2))),则当t=0时,角θ的大小及单摆频率是()A.eq\f(1,2),eq\f(1,π)B.2,eq\f(1,π)C.eq\f(1,2),πD.2,π3.如图为某简谐运动的图象,则这个简谐运动需要________s往返一次.4.如图所示的图象显示的是相对于平均海平面的某海湾的水面高度y(m)在某天24h内的变化情况,则水面高度y关于从夜间0时开始的时间x的函数关系式为________________.【自主探究】题型一三角函数模型在物理学中的应用例1已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s(cm)随时间t(s)的变化规律为s=4sineq\b\lc\(\rc\)(\a\vs4\al\co1(2t+\f(π,3))),t∈[0,+∞).(1)用“五点法”作出这个函数的简图;(2)小球在开始振动(t=0)时的位移是多少?(3)小球上升到最高点和下降到最低点时的位移分别是多少?(4)经过多长时间小球往复振动一次?跟踪训练一1.单摆从某点开始来回摆动,离开平衡位置的距离s(单位:cm)和时间t(单位:s)的函数关系式为s=6sineq\b\lc\(\rc\)(\a\vs4\al\co1(2πt+\f(π,6))).(1)当单摆开始摆动(t=0)时,离开平衡位置的距离是多少?(2)当单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需多长时间?题型二三角函数模型的实际应用例2如图,某地一天从6~14时的温度变化曲线近似满足函数.(1)求这一天6~14时的最大温差;(2)写出这段曲线的函数解析式跟踪训练二1.已知某海滨浴场的海浪高度y(m)是时间t(h)的函数,其中0≤t≤24,记y=f(t),下表是某日各时的浪高数据:t03691215182124y1.51.00.51.01.510.50.991.5经长期观测,y=f(t)的图象可近似地看成是函数y=Acosωt+b的图象.(1)根据以上数据,求其最小正周期,振幅及函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8:00到20:00之间,有多少时间可供冲浪者进行活动?【课堂检测】1.与图中曲线对应的函数解析式是()A.y=|sinx| B.y=sin|x|C.y=-sin|x| D.y=-|sinx|2.某人的血压满足函数式f(t)=24sin160πt+110,其中f(t)为血压,t为时间,则此人每分钟心跳的次数为()A.60B.70C.80D.903.一弹簧振子的位移y与时间t的函数关系式为y=Asin(ωt+φ)(A>0,ω>0),若弹簧振子运动的振幅为3,周期为eq\f(2π,7),初相为eq\f(π,6),则这个函数的解析式为________.4.一根长lcm的线,一端固定,另一端悬挂一个小球,小球摆动时离开平衡位置的位移s(cm)与时间t(s)的函数关系式为s=3coseq\b\lc\(\rc\)(\a\vs4\al\co1(\r(\f(g,l))t+\f(π,3))),其中g是重力加速度,当小球摆动的周期是1s时,线长l=________cm.5.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化.(1)求出动物种群数量y关于时间t的函数表达式;(其中t以年初以来的月为计量单位)(2)估计当年3月1日动物种群数量.答案小试牛刀1.C2.A3.0.8.4.y=-6sineq\f(π,6)x.自主探究例1【答案】(1)略(2)2eq\r(3)cm.(3)小球上升到最高点和下降到最低点时的位移分别是4cm和-4cm.(4)πs.【解析】(1)列表如下:t-eq\f(π,6)eq\f(π,12)eq\f(π,3)eq\f(7π,12)eq\f(5π,6)2t+eq\f(π,3)0eq\f(π,2)πeq\f(3π,2)2πsineq\b\lc\(\rc\)(\a\vs4\al\co1(2t+\f(π,3)))010-10s040-40描点、连线,图象如图所示.(2)将t=0代入s=4sineq\b\lc\(\rc\)(\a\vs4\al\co1(2t+\f(π,3))),得s=4sineq\f(π,3)=2eq\r(3),所以小球开始振动时的位移是2eq\r(3)cm.(3)小球上升到最高点和下降到最低点时的位移分别是4cm和-4cm.(4)因为振动的周期是π,所以小球往复振动一次所用的时间是πs.跟踪训练一1.【答案】(1)3cm;(2)6cm;(3)1s.【解析】(1)由s=6sineq\b\lc\(\rc\)(\a\vs4\al\co1(2πt+\f(π,6)))得t=0时,s=6sineq\f(π,6)=3(cm),所以单摆开始摆动时,离开平衡位置的距离是3cm;(2)由解析式知,振幅为6,∴单摆摆动到最右边时,离开平衡位置的距离是6cm;(3)T=eq\f(2π,ω)=eq\f(2π,2π)=1,即单摆来回摆动一次需1s.例2【答案】(1);(2)∴。【解析】(1)由图可知:这段时间的最大温差是;(2)从图可以看出:从6~14是的半个周期的图象,∴∴∵,∴又∵∴∴将点代入得:,∴,∴,取,∴。跟踪训练二1.【答案】(1)T=12,振幅为eq\f(1,2),函数解析式为y=eq\f(1,2)coseq\f(π,6)t+1(0≤t≤24).(2)在规定时间内只有6个小时冲浪爱好者可以进行活动,即9<t<15.【解析】(1)由表中数据可知,T=12,∴ω=eq\f(π,6).又t=0时,y=1.5,∴A+b=1.5;t=3时,y=1.0,得b=1.0,所以振幅为eq\f(1,2),函数解析式为y=eq\f(1,2)coseq\f(π,6)t+1(0≤t≤24).(2)∵y>1时,才对冲浪爱好者开放,∴y=eq\f(1,2)coseq\f(π,6)t+1>1,coseq\f(π,6)t>0,2kπ-eq\f(π,2)<eq\f(π,6)t<2kπ+eq\f(π,2),即12k-3<t<12k+3(k∈Z)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论