山东省德州市德州经济技术开发区太阳城中学2023年八上数学期末检测试题含解析_第1页
山东省德州市德州经济技术开发区太阳城中学2023年八上数学期末检测试题含解析_第2页
山东省德州市德州经济技术开发区太阳城中学2023年八上数学期末检测试题含解析_第3页
山东省德州市德州经济技术开发区太阳城中学2023年八上数学期末检测试题含解析_第4页
山东省德州市德州经济技术开发区太阳城中学2023年八上数学期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省德州市德州经济技术开发区太阳城中学2023年八上数学期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列从左边到右边的变形,是正确的因式分解的是()A. B.C. D.2.若一个等腰三角形腰上的高等于腰长的一半,则这个等腰三角形底角度数为()A.30° B.30°或60° C.15°或30° D.15°或75°3.下列各组条件中能判定的是()A.,, B.,,C.,, D.,,4.9的平方根是()A.±3 B.3 C.±81 D.±35.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.6.要使分式有意义,则的取值应满足()A. B. C. D.7.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为()A.75° B.105° C.135° D.165°8.下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n29.已知、均为正整数,且,则()A. B. C. D.10.在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为()A.50° B.40° C.30° D.25°11.若等腰三角形的两边长分别4和6,则它的周长是()A.14 B.15 C.16 D.14或1612.下列命题中,属于假命题的是()A.直角三角形的两个锐角互余 B.有一个角是的三角形是等边三角形C.两点之间线段最短 D.对顶角相等二、填空题(每题4分,共24分)13.若点关于轴的对称点是,则的值是__________.14.若实数x,y满足方程组,则x-y=______.15.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.16.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.17.如图,直线AB∥CD,直线EF分别与直线AB和直线CD交于点E和F,点P是射线EA上的一个动点(P不与E重合)把△EPF沿PF折叠,顶点E落在点Q处,若∠PEF=60°,且∠CFQ:∠QFP=2:5,则∠PFE的度数是_______.18.如图,已知为中的平分线,为的外角的平分线,与交于点,若,则______.三、解答题(共78分)19.(8分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.(1)求证:BE=AD(2)求的度数;(3)若PQ=3,PE=1,求AD的长.20.(8分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:⑴小亮在家停留了分钟;⑵求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式;⑶若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n-m=分钟.21.(8分)A、B两车从相距360千米的甲、乙两地相向匀速行驶,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图所示,表示的是B车,表示的是A车.(1)汽车B的速度是多少?(2)求、分别表示的两辆汽车的s与t的关系式.(3)行驶多长时间后,A、B两车相遇?(4)什么时刻两车相距120千米?22.(10分)如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:AB+CD=AC23.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.24.(10分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.25.(12分)如图,为边长不变的等腰直角三角形,,,在外取一点,以为直角顶点作等腰直角,其中在内部,,,当E、P、D三点共线时,.下列结论:①E、P、D共线时,点到直线的距离为;②E、P、D共线时,;;④作点关于的对称点,在绕点旋转的过程中,的最小值为;⑤绕点旋转,当点落在上,当点落在上时,取上一点,使得,连接,则.其中正确结论的序号是___.26.已知:如图,相交于点.若,求的长.

参考答案一、选择题(每题4分,共48分)1、D【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A、右边不是积的形式,该选项错误;B、,该选项错误;

C、右边不是积的形式,该选项错误;D、,是因式分解,正确.

故选:D.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的定义.2、D【分析】因为三角形的高有三种情况,而直角三角形不合题意,故舍去,所以应该分两种情况进行分析,从而得到答案.【详解】(1)当等腰三角形是锐角三角形时,腰上的高在三角形内部,如图,BD为等腰三角形ABC腰AC上的高,并且BD=AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角为30°,此时底角为75°;(2)当等腰三角形是钝角三角形时,腰上的高在三角形外部,如图,BD为等腰三角形ABC腰AC上的高,并且BD=AB,根据直角三角形中30°角的对边等于斜边的一半的逆用,可知顶角的邻补角为30°,此时顶角是150°,底角为15°.故选:D.【点睛】此题主要考查等腰三角形的性质及30°直角三角形的性质的逆用;正确的分类讨论是解答本题的关键.3、D【分析】根据三角形全等的判定判断即可.【详解】由题意画出图形:A选项已知两组对应边和一组对应角,但这组角不是夹角,故不能判定两三角形全等;B选项已知两组对应边和一组边,但这组边不是对应边,故不能判定两三角形全等;C选项已知三组对应角,不能判定两三角形全等;D选项已知三组对应边,可以判定两三角形全等;故选D.【点睛】本题考查三角形全等的判定,关键在于熟练掌握判定条件.4、D【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±3)2=9,∴9的平方根是±3,故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.6、C【分析】根据分式有意义的条件是分母不等于零可得到,解不等式即可.【详解】解:由题意得:,解得:,故选:.【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.本题不难,要注意审题.7、D【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.【详解】由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选D.【点睛】本题考查三角形的外角性质,解题的关键是掌握三角形的外角性质.8、B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.9、C【分析】根据幂的乘方,把变形为,然后把代入计算即可.【详解】∵,∴=.故选C.【点睛】本题考查了幂的乘方运算,熟练掌握幂的乘方法则是解答本题的关键.幂的乘方底数不变,指数相乘.10、A【分析】根据三角形内角和定理求出∠B+∠C,根据线段的垂直平分线的性质得到EA=EB,GA=GC,根据等腰三角形的性质计算即可.【详解】∵∠BAC=115°,∴∠B+∠C=65°,∵DE、FG分别为AB、AC的垂直平分线,∴EA=EB,GA=GC,∴∠EAB=∠B,∠GAC=∠C,∴∠EAG=∠BAC-(∠EAB+∠GAC)=∠BAC-(∠B+∠C)=50°,故选A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11、D【解析】根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选D.12、B【分析】根据直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等即可逐一判断.【详解】解:A.直角三角形的两个锐角互余,正确;B.有一个角是的三角形不一定是等边三角形;故B错误;C.两点之间线段最短,正确;D.对顶角相等,正确,故答案为:B.【点睛】本题考查了命题的判断,涉及直角三角形的性质、等边三角形的判定、两点之间线段最短、对顶角相等,解题的关键是掌握上述知识点.二、填空题(每题4分,共24分)13、-3【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出m、n的值,再计算m+n的值即可.【详解】∵点关于轴的对称点是,∴m=-2,n=-1,∴m+n=-2-1=-3.故答案为-3.【点睛】本题主要考查关于坐标轴对称的点的特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.14、1【分析】用第一个式子减去第二个式子即可得到,化简可得【详解】解:①-②得:∴故答案为:1.【点睛】本题考查二元一次方程组,重点是整体的思想,掌握解二元一次方程组的方法为解题关键.15、0.4【解析】根据数据2、3、3、4、x的平均数是3,先利用平均数的计算公式可求出x,然后利用方差的计算公式进行求解即可.【详解】∵数据2、3、3、4、x的平均数是3,∴,∴,∴,故答案为.【点睛】本题主要考查了平均数和方差的计算,解题的关键是熟练掌握平均数和方差的计算公式.16、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.17、50°【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ=∠EFC=×120°=20°,∴∠PFE=∠EFQ=(∠EFC﹣∠CFQ)=(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.18、56°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACE和∠DCE,再根据角平分线的定义可得∠ABC=2∠DBC,∠ACE=2∠DCE,然后整理即可得解.【详解】由三角形的外角性质得,∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∵BD为△ABC中∠ABC的平分线,CD为△ABC中的外角∠ACE的平分线,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∴∠A+∠ABC=2(∠D+∠DBC),整理得,∠A=2∠D,∵∠D=28°,∴∠A=2×28°=56°故答案为:56°.【点睛】本题考查了角平分线与三角形的外角性质,熟练运用外角性质将角度转化是解题的关键.三、解答题(共78分)19、见解析【分析】(1)根据题意只要能证明△ABE≌△CAD即可;(2)根据△ABE≌△CAD得∠EBA=∠CAD,所以=∠EBA+∠BAD=∠CAD+∠BAD=∠CAB=60°;(3)因为=60°,BQ⊥AD,所以∠PBQ=30°,PB=2PQ=6,然后可求AD的长.【详解】(1)证明:为等边三角形,在△ABE和△CAD中∴△ABE≌△CAD.∴BE=AD(2)证明:∵△ABE≌△CAD.(3)∵∴AD=7考点:1.等边三角形的性质;2.全等三角形的判定与性质;3.直角三角形的性质.20、(1)2;(2)y=150x﹣1500(10≤x≤1);(3)1分钟.【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;(2)根据C、D两点坐标,利用待定系数法即可解决问题;(3)求出原计划步行到达图书馆的时间为n,即可解决问题.【详解】解:(1)步行速度:10÷6=50m/min,单车速度:3×50=150m/min,单车时间:100÷150=20min,1﹣20=10,∴C(10,0),∴A到B是时间==2min,∴B(8,0),∴BC=2,∴小亮在家停留了2分钟.故答案为:2;(2)设y=kx+b,过C、D(1,100),∴,解得,∴y=150x﹣1500(10≤x≤1)(3)原计划步行到达图书馆的时间为n分钟,n==60n﹣m=60﹣1=1分钟,故答案为:1.【点睛】本题考查一次函数的应用,利用数形结合思想解题是关键.21、(1)120千米时;(2)对应的函数解析式为,对应的函数解析式为;(3)分钟;(4)当行驶小时或小时后,,两车相距120千米.【分析】(1)根据函数图象可以得到汽车的速度;(2)根据图象可以设出、的解析式,由函数图象上的点可以求得它们的解析式;(3)根据函数关系式列方程解答即可;(4)分两种情况讨论,相遇前和相遇后,然后列方程解答即可.【详解】解:(1)由图象可得,(千米时);答:汽车的速度为120千米时;(2)设对应的函数解析式为,,解得,即对应的函数解析式为,∵经过原点,则设对应的函数解析式为,,得,即对应的函数解析式为;(3)当两车相遇时,可得方程,解之得:;(4)由图象可得,汽车的速度为:千米时;设两车相距120千米时的时间是,则当两车没有相遇前,相距120千米时解之得:;当两车相遇后,再相距120千米时,解得,当时,汽车行驶的距离是,即汽车还没有达到终点,符合题意,答:当行驶小时或小时后,,两车相距120千米.【点睛】本题考查一次函数的应用和余元一次方程的应用,解题的关键是明确题意,找出所求问题需要的条件是解题的关键.22、(1)见解析;(2)见解析【分析】(1)首先根据角平分线的性质得出,然后通过线段中点和等量代换得出,最后根据角平分线的性质定理的逆定理得出结论即可;(2)首先根据HL证明,得出,同理可得,最后通过等量代换即可得出结论.【详解】(1)如图,过点O作于点E,OA平分∠BAC,∠ABD=90°,,.∵点O为BD的中点,,.∵∠ABD=90°,,OC平分∠ACD;(2)在和中,,,同理可得,.,.【点睛】本题主要考查角平分线的性质定理及逆定理,直角三角形的判定及性质,掌握这些性质及判定是解题的关键.23、(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.24、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论