版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省菏泽市2023-2024学年数学九上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为()A.84株B.88株C.92株D.121株2.圆锥的母线长为4,底面半径为2,则它的侧面积为()A.4π B.6π C.8π D.16π3.若a是方程的一个解,则的值为A.3 B. C.9 D.4.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.5.二次函数(是常数,)的自变量与函数值的部分对应值如下表:…012………且当时,与其对应的函数值.有下列结论:①;②和3是关于的方程的两个根;③.其中,正确结论的个数是()A.0 B.1 C.2 D.36.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.7.一元二次方程x2﹣3x+5=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.只有一个实数根 D.有两个不相等的实数根8.用min{a,b}表示a,b两数中的最小数,若函数,则y的图象为()A. B. C. D.9.圆锥的底面半径为1,母线长为2,则这个圆锥的侧面积是()A. B. C. D.10.如图,在△ABC中,∠A=90°.若AB=12,AC=5,则cosC的值为()A. B. C. D.11.如图,⊙中,,则等于()A. B. C. D.12.如图,是的直径,是的弦,已知,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.已知,则_______.14.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是,那么另一个三角形的面积为.15.甲、乙两人在米短跑训练中,某次的平均成绩相等,甲的方差是,乙的方差是,这次短跑训练成绩较稳定的是___(填“甲”或“乙”)16.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为__________.17.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=6cm,则线段BC=____cm.18.小丽生日那天要照全家福,她和爸爸、妈妈随意排成一排,则小丽站在中间的概率是________.三、解答题(共78分)19.(8分)已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.20.(8分)已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.(1)求抛物线的解析式和直线的解析式.(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.21.(8分)如图,为反比例函数(x>0)图象上的一点,在轴正半轴上有一点,.连接,,且.(1)求的值;(2)过点作,交反比例函数(x>0)的图象于点,连接交于点,求的值.22.(10分)平面直角坐标系中,函数(x>0),y=x-1,y=x-4的图象如图所示,p(a,b)是直线上一动点,且在第一象限.过P作PM∥x轴交直线于M,过P作PN∥y轴交曲线于N.(1)当PM=PN时,求P点坐标(2)当PM>PN时,直接写出a的取值范围.23.(10分)如图,在平行四边形中,过点作,垂足为,连接,为上一点,且.(1)求证:.(2)若,,,求的长.24.(10分)图1和图2中的正方形ABCD和四边形AEFG都是正方形.(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.25.(12分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.26.利客来超市销售某种商品,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
参考答案一、选择题(每题4分,共48分)1、B【解析】解:由图可得,芍药的数量为:4+(2n﹣1)×4,∴当n=11时,芍药的数量为:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故选B.点睛:本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化规律.2、C【分析】求出圆锥的底面圆周长,利用公式即可求出圆锥的侧面积.【详解】解:圆锥的地面圆周长为2π×2=4π,
则圆锥的侧面积为×4π×4=8π.
故选:C.【点睛】本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式.3、C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.4、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原来的图形重合.5、C【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-=;∴a、b异号,且b=-a;∵当x=0时y=c=-2∴c∴abc0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴和3是关于的方程的两个根;故②正确;∵b=-a,c=-2∴二次函数解析式:∵当时,与其对应的函数值.∴,∴a;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4;故③错误故选C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量与函数值的值结合二次函数的性质逐条分析给定的结论是关键.6、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2考点:切线的性质;最值问题.7、A【解析】Δ=b2-4ac=(-3)2-4×1×5=9-20=-11<0,所以原方程没有实数根,故选A.8、C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x2+1,1-x2}表示x2+1与1-x2中的最小数,不论x取何值,都有x2+1≥1-x2,所以y=1-x2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x轴的交点坐标为(1,0),(-1,0);与y轴的交点坐标为(0,1).故选C.【点睛】考核知识点:二次函数的性质.9、B【分析】根据题意得出圆锥的底面半径为1,母线长为2,直接利用圆锥侧面积公式求出即可.【详解】依题意知母线长为:2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故选:B.【点睛】此题主要考查了圆锥侧面面积的计算,对圆锥的侧面面积公式运用不熟练,易造成错误.10、A【解析】∵∠A=90°,AC=5,AB=12,∴BC==13,∴cosC=,故选A.11、C【分析】直接根据圆周角定理解答即可.【详解】解:∵∠ABC与∠AOC是一条弧所对的圆周角与圆心角,∠ABC=45°,
∴∠AOC=2∠ABC=2×45°=90°.
故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12、C【分析】根据圆周角定理即可解决问题.【详解】∵,∴.故选:C.【点睛】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(每题4分,共24分)13、-5【分析】设,可用参数表示、,再根据分式的性质,可得答案.【详解】解:设,得,,,故答案为:.【点睛】本题考查了比例的性质,利用参数表示、可以简化计算过程.14、25【解析】试题解析:∵两个相似三角形的相似比为2:5,∴面积的比是4:25,∵小三角形的面积为4,∴大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.15、乙【分析】根据方差的含义,可判断谁的成绩较稳定.【详解】在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是刻画数据的波动大小程度,方差越小,代表数据波动越小.因此,在本题中,方差越小,代表成绩越稳定,故乙的训练成绩比较稳定.【点睛】本题考查方差的概念和含义.16、【分析】同圆或等圆中,两弦相等,所对的优弧或劣弧也对应相等,据此求解即可.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∴===,∴的长等于⊙O周长的四分之一,∵⊙O的半径为6,∴⊙O的周长==,∴的长等于,故答案为:.【点睛】本题主要考查了圆中弧与弦之间的关系,熟练掌握相关概念是解题关键.17、18【分析】根据已知图形构造相似三角形,进而得出,即可求得答案.【详解】如图所示:过点A作平行线的垂线,交点分别为D、E,可得:,∴,即,解得:,∴,故答案为:.【点睛】本题主要考查了相似三角形的应用,根据题意得出是解答本题的关键.18、【分析】先利用树状图展示所有6种等可能的结果数,再找出小丽恰好排在中间的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有种等可能的结果数,其中小丽站在中间的结果数为,所以小丽站在中间的概率.故答案为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.三、解答题(共78分)19、(1)tan∠DCE=;(2)=.【分析】(1)根据已知条件求出CD,再利用勾股定理求解出ED,即可得到结果;(2)过D作DG∥CF交AB于点G,根据平行线分线段成比例即可求得结果;【详解】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB=,∴CD=5,由勾股定理得:AD=,∵E是AD的中点,∴ED=AD=6,∴tan∠DCE=;(2)过D作DG∥CF交AB于点G,如图所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴,,∴AF=FG,设BG=3x,则AF=FG=5x,BF=FG+BG=8x∴.【点睛】本题主要考查了解直角三角形的应用,结合勾股定理和平行线分线段成比例求解是解题的关键.20、(1)抛物线的表达式为:,直线的表达式为:;(2)存在,理由见解析;点或或或.【解析】(1)二次函数表达式为:y=a(x-1)2+9,即可求解;
(2)S△DAC=2S△DCM,则,,即可求解;
(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:,将点的坐标代入上式并解得:,故抛物线的表达式为:…①,则点,将点的坐标代入一次函数表达式并解得:直线的表达式为:;(2)存在,理由:二次函数对称轴为:,则点,过点作轴的平行线交于点,设点,点,∵,则,解得:或5(舍去5),故点;(3)设点、点,,①当是平行四边形的一条边时,点向左平移4个单位向下平移16个单位得到,同理,点向左平移4个单位向下平移16个单位为,即为点,即:,,而,解得:或﹣4,故点或;②当是平行四边形的对角线时,由中点公式得:,,而,解得:,故点或;综上,点或或或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.21、(1)k=12;(2).【分析】(1)过点作交轴于点,交于点,易知OH长度,在直角三角形OHA中得到AH长度,从而得到A点坐标,进而算出k值;(2)先求出D点坐标,得到BC长度,从而得到AM长度,由平行线得到,所以【详解】解:(1)过点作交轴于点,交于点.(2)【点睛】本题主要考查反比例函数与相似三角形的综合问题,难度不大,解题关键在于求出k22、(1)(2,1)或(,);(2)【分析】(1)根据直线与直线的特征,可以判断为平行四边形,且,再根据坐标特征得到等式=3,即可求解;(2)根据第(1)小题的结果结合图象即可得到答案.【详解】(1)∵直线与轴交点,直线与轴交点,∴,∵直线与直线平行,且∥轴,∴为平行四边形,∴,∵∥轴,在的图象上,∴,∵在直线上,∴,∵,∴=3,解得:或,(2)如图,∵或,,当点在直线和区间运动时,,∴【点睛】本题考查了一次函数与反比例函数的交点问题,利用函数图象性质解决问题是本题的关键.23、(1)见解析;(2)【解析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE=∠C,根据等角的补角相等可得出∠ADE=∠AFB,根据AB∥CD可得出∠BAF=∠AED,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB,AE,AD,BF的比例关系,有了AD,AB的长,只需求出AE的长即可.可在直角三角形ABE中用勾股定理求出AE的长,这样就能求出BF的长了.【详解】(1)证明:在平行四边形ABCD中,∵∠D+∠C=180°,AB∥CD,∴∠BAF=∠AED.∵∠AFB+∠BFE=180°,∠D+∠C=180°,∠BFE=∠C,∴∠AFB=∠D,∴△ABF∽△EAD.(2)解:∵BE⊥CD,AB∥CD,∴BE⊥AB.∴∠ABE=90°.∴.∵△ABF∽△EAD,,..【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.24、(1)AM=DE,AM⊥DE,理由详见解析;(2)AM=DE,AM⊥DE,理由详见解析.【解析】试题分析:(1)AM=DE,AM⊥DE,理由是:先证明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根据直角三角形斜边的中线的性质得AM=BG,AM=BM,则AM=DE,由角的关系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作辅助线构建全等三角形,证明△MNG≌△MAB和△AGN≌△EAD可以得出结论.试题解析:(1)AM=DE,AM⊥DE,理由是:如图1,设AM交DE于点O,∵四边形ABCD和四边形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M为线段BG的中点,∴AM=BG,AM=BM,∴AM=DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:如图2,延长AM到N,使MN=AM,连接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考点:旋转的性质;正方形的性质.25、(1);(2)P(,);(3)C(-3,-5)或(-3,)【分析】(1)设顶点式,将B点代入即可求;(2)根据4m+3n=12确定点P所在直线的解析式,再根据内切线的性质可知P点在∠BAO的角平分线上,求两线交点坐标即为P点坐标;(3)根据角之间的关系确定C在∠DBA的角平分线与对称轴的交点或∠ABO的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B(0,4)代入得,4=9a∴a=∴(2)如图∵P(m,n),且满足4m+3n=12∴∴点P在第一象限的上,∵以点P为圆心的圆与直线AB、x轴相切,∴点P在∠B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年福州市劳动协议格式
- 安保岗位聘用协议范本2024年限定
- 2024事业单位劳动协议定制样本
- 2024年不变单价服务协议格式
- 2024年债务以资抵债协议样本
- 2024房产中介服务协议模板
- DB11∕T 1671-2019 户用并网光伏发电系统电气安全设计技术要求
- 2024高效货车驾驶员专属聘请协议
- 二手电动摩托车交易协议2024年
- 2024年借款融资居间协议格式
- 品牌提升方案
- 员工关怀实施方案课件
- 交警指挥系统方案GIS
- 助产专业大学生职业生涯规划
- 肺动脉高压患者查房
- 苍蝇小子课件
- 文华财经“麦语言”函数手册
- 急性会厌炎护理查房
- (完整版)俄语动词命令式的构成及用法
- 加油站有限空间安全管理制度规范
- GB/Z 43281-2023即时检验(POCT)设备监督员和操作员指南
评论
0/150
提交评论