数学中考模拟试卷与答案解析(共五套)_第1页
数学中考模拟试卷与答案解析(共五套)_第2页
数学中考模拟试卷与答案解析(共五套)_第3页
数学中考模拟试卷与答案解析(共五套)_第4页
数学中考模拟试卷与答案解析(共五套)_第5页
已阅读5页,还剩167页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考模拟考试数学试卷(一)一、单项选择题(共8小题,每小题3分,共24分.)1.下列各数的相反数中,最大的是()A.2 B.1 C.﹣1 D.﹣22.如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是()A.15° B.30° C.45° D.60°3.第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)()A.1.02×108B.0.102×109C.1.015×108D.0.1015×1094.若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A. B.4 C.25 D.55.如图,某机器零件的三视图中,既是轴对称图形,又是中心对称图形的是()A.主视图B.左视图C.俯视图D.不存在6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是()A.对10个国家出口额的中位数是26201万美元B.对印度尼西亚的出口额比去年同期减少C.去年同期对日本出口额小于对俄罗斯联邦的出口额D.出口额同比增速中,对美国的增速最快8.记实数x1,x2,…,xn中的最小数为min|x1,x2,…,xn|=﹣1,则函数y=min|2x﹣1,x,4﹣x|的图象大致为()A.B.CD.二、多项选择题(共4小题,每小题3分,共12分.每小题四个选项有多项正确,全部选对得3分,部分选对得2分,有选错的即得0分.)9.下列运算正确的是.A.B.C.D.10.如图,在直角坐标系中,点A是函数y=﹣x图象上的动点,1为半径作⊙A.已知点B(﹣4,0),连接AB,当⊙A与两坐标轴同时相切时,tan∠ABO的值可能为_______.A.3B.C.5D.11.古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B,BO为半径作圆孤分别交⊙O于C,D两点,DO并延长分交⊙O于点E,F;④顺次连接BC,FA,AE,DB,得到六边形AFCBDE.连接AD,交于点G,则下列结论错误的是.A.△AOE的内心与外心都是点GB.∠FGA=∠FOAC.点G是线段EF三等分点D.EF=AF12.在直角坐标系中,若三点A(1,﹣2),B(2,﹣2),C(2,0)中恰有两点在抛物线y=ax2+bx﹣2(a>0且a,b均为常数)的图象上,则下列结论正确是().A.抛物线的对称轴是直线B.抛物线与x轴的交点坐标是(﹣,0)和(2,0)C.当t>时,关于x一元二次方程ax2+bx﹣2=t有两个不相等的实数根D.若P(m,n)和Q(m+4,h)都是抛物线上的点且n<0,则.三、填空题(共4小题,每小题4分,共16分.只填写最后结果.)13.甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数图象经过点(0,1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为_______.14.若x<2,且,则x=_______.15.在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点An(506,﹣505),则n的值为_______.16.如图,在直角坐标系中,O为坐标原点与(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=_______.(结果用a,b表示)四、解答题(共7小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤)17.(1)计算:;(2)先化简,再求值:(x,y)是函数y=2x与的图象的交点坐标.18.如图,某海岸线M的方向为北偏东75°,甲、乙两船同时出发向C处海岛运送物资.甲船从港口A处沿北偏东45°方向航行,其中乙船的平均速度为v.若两船同时到达C处海岛,求甲船的平均速度.(结果用v表示.参考数据:≈1.4,≈1.7)19.从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下的5组(满分为100分):A组:50≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100,分别制成频数分布直方图和扇形统计图如图.(1)根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;(3)若甲、乙两班参加测试的学生成绩统计如下:甲班:62,64,66,76,76,77,82,83,83,91;乙班:51,52,69,70,71,71,88,89,99,100.则可计算得两班学生的样本平均成绩为x甲=76,x乙=76;样本方差为s甲2=80,s乙2=275.4.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.20.某山村经过脱贫攻坚和乡村振兴,经济收入持续增长.经统计,近五年该村甲农户年度纯收入如表所示:年度(年)201620172018201920202021年度纯收入(万元)1.52.54.57.511.3若记2016年度为第1年,在直角坐标系中用点(1,15),(2,2.5),(3,4.5),(4,7.5),(5,11.3)表示近五年甲农户纯收入的年度变化情况.如图所示(m>0),y=x+b(k>0),y=ax2﹣0.5x+c(a>0),以便估算甲农户2021年度的纯收入.(1)能否选用函数(m>0)进行模拟,请说明理由;(2)你认为选用哪个函数模拟最合理,请说明理由;(3)甲农户准备在2021年底购买一台价值16万元的农机设备,根据(2)中你选择的函数表达式,预测甲农户2021年度的纯收入能否满足购买农机设备的资金需求.21.如图,半圆形薄铁皮的直径AB=8,点O为圆心(不与A,B重合),连接AC并延长到点D,使AC=CD,作DH⊥AB,交半圆、BC于点E,F,连接OC,∠ABC=θ,θ随点C的移动而变化.(1)移动点C,当点H,B重合时,求证:AC=BC;(2)当θ<45°时,求证:BH•AH=DH•FH;(3)当θ=45°时,将扇形OAC剪下并卷成一个圆锥的侧面,求该圆锥的底面半径和高.22.如图,在直角坐标系中,O为坐标原点,抛物线顶点为M(2,﹣),抛物线与x轴的一个交点为A(4,0),点B(2,),点C(-2,)(1)判断点C是否在该抛物线上,并说明理由;(2)顺次连接AB,BC,CO,求四边形AOCB的面积;(3)设点P是抛物线上AC间的动点,连接PC、AC,△PAC的面积S随点P的运动而变化;当S的值为2时,求点P的横坐标的值.23.如图1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D为△ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:△BDA≌△BFE;(2)①CD+DF+FE的最小值为;②当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.答案解析一、单项选择题(共8小题,每小题3分,共24分.)1.下列各数的相反数中,最大的是()A.2B.1C.﹣1D.﹣2【答案】D【解析】【分析】根据相反数的概念先求得每个选项中对应的数据的相反数,然后再进行有理数的大小比较.【详解】解:2的相反数是﹣2,1的相反数是﹣1,﹣1的相反数是1,﹣2的相反数是2,∵2>1>﹣1>﹣2,故选:D.【点睛】本题考查相反数的概念及有理数的大小比较,只有符号不同的两个数叫做互为相反数,正数大于0,0大于负数,正数大于一切负数;两个负数比大小,绝对值大的反而小.2.如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是()A.15°B.30°C.45°D.60°【答案】B【解析】【分析】作CD⊥平面镜,垂足为G,根据EF⊥平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,∵EF⊥平面镜,∴CD//EF,∴∠CDH=∠EFH=α,根据题意可知:AG∥DF,∴∠AGC=∠CDH=α,∴∠AGC=α,∵∠AGCAGB60°=30°,∴α=30°.故选:B.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG平分∠AGB.3.第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101527000用科学记数法(精确到十万位)()A.1.02×108B.0.102×109C.1.015×108D.0.1015×109【答案】C【解析】【分析】先用四舍五入法精确到十万位,再按科学记数法的形式和要求改写即可.【详解】解:故选:C【点睛】本题考查了近似数和科学记数法的知识点,取近似数是本题的基础,熟知科学记数法的形式和要求是解题的关键.4.若菱形两条对角线的长度是方程x2﹣6x+8=0的两根,则该菱形的边长为()A.B.4C.25D.5【答案】A【解析】【分析】先求出方程的解,即可得到,根据菱形的性质求出和,根据勾股定理求出即可.【详解】解:解方程,得,即,∵四边形是菱形,∴,由勾股定理得,即菱形的边长为,故选:.【点睛】本题考查了解一元二次方程和菱形的性质,正确求出方程的根是解题的关键.5.如图,某机器零件的三视图中,既是轴对称图形,又是中心对称图形的是()A.主视图B.左视图C.俯视图D.不存在【答案】C【解析】【分析】根据该几何体的三视图,结合轴对称图形的定义:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形及中心对称的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形进行判断即可.【详解】解:该几何体的三视图如下:三视图中既是轴对称图形,又是中心对称图形的是俯视图,故选:C.【点睛】本题考查简单几何体的三视图,中心对称、轴对称,理解视图的意义,掌握简单几何体三视图的画法以及轴对称、中心对称的意义是正确判断的前提.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】分别求出每一个不等式的解集,再将解集表示在同一数轴上即可得到答案.【详解】解:解不等式①,得:x≥-1,解不等式②,得:x<2,将不等式的解集表示在同一数轴上:所以不等式组的解集为-1≤x<2,故选:D.【点睛】本题考查的是解一元一次不等式组,关键是正确求出每一个不等式解集,并会将解集表示在同一数轴上.7.如图为2021年第一季度中国工程机械出口额TOP10国家的相关数据(同比增速是指相对于2020年第一季度出口额的增长率),下列说法正确的是()A.对10个国家出口额的中位数是26201万美元B.对印度尼西亚的出口额比去年同期减少C.去年同期对日本的出口额小于对俄罗斯联邦的出口额D.出口额同比增速中,对美国的增速最快【答案】A【解析】【分析】A、根据中位数的定义判断即可;B、根据折线图即可判断出对印度尼西亚的出口额的增速;C、分别求出去年同期对日本和俄罗斯联邦的出口额即可判断;D、根据折线图即可判断.【详解】解:A、将这组数据按从小到大的顺序排列为:19677,19791,21126,24268,25855,26547,29285,35581,39513,67366,位于中间的两个数分别是25855,26547,所以中位数是,选项正确,符合题意;B、根据折线图可知,对印度尼西亚的出口额比去年同期增长,选项说法错误,不符合题意;C、去年同期对日本的出口额为:,对俄罗斯联邦的出口额为:,选项错误,不符合题意;D、根据折线图可知,出口额同比增速中,对越南的增速最快,选项错误,不符合题意.故选:A.【点睛】此题考查了中位数的概念和折线统计图和柱状图,解题的关键是正确分析出图中的数据.8.记实数x1,x2,…,xn中的最小数为min|x1,x2,…,xn|=﹣1,则函数y=min|2x﹣1,x,4﹣x|的图象大致为()A.B.C.D.【答案】B【解析】【分析】分别画出函数的图像,然后根据min|x1,x2,…,xn|=﹣1即可求得.【详解】如图所示,分别画出函数的图像,由图像可得,,故选:B.【点睛】此题考查了一次函数图像的性质,解题的关键是由题意分析出各函数之间的关系.二、多项选择题(共4小题,每小题3分,共12分.每小题四个选项有多项正确,全部选对得3分,部分选对得2分,有选错的即得0分.)9.下列运算正确的是.A.B.C.D.【答案】A【解析】【分析】根据完全平方公式、负数指数幂、分式的化简、根式的化简分别计算解答即可.【详解】解:A、,选项运算正确;B、,选项运算错误;C、是最简分式,选项运算错误;D、,选项运算错误;故选:A.【点睛】此题综合考查了代数式的运算,关键是掌握代数式运算各种法则解答.10.如图,在直角坐标系中,点A是函数y=﹣x图象上的动点,1为半径作⊙A.已知点B(﹣4,0),连接AB,当⊙A与两坐标轴同时相切时,tan∠ABO的值可能为_______.A.3B.C.5D.【答案】BD【解析】【分析】根据“⊙A与两坐标轴同时相切”分为⊙A在第二象限,第四象限两种情况进行解答.【详解】解:如图,当⊙A在第二象限,与两坐标轴同时相切时,在Rt△ABM中,AM=1=OM,BM=BO﹣OM=4﹣1=3,∴tan∠ABO;当⊙A在第四象限,与两坐标轴同时相切时,在Rt△ABM中,AM=1=OM,BM=BO+OM=4+1=5,∴tan∠ABO;故答案为:B或D.【点睛】本题考查切线的性质和判定,解直角三角形,根据不同情况画出相应的图形,利用直角三角形的边角关系求出答案是解决问题的前提.11.古希腊数学家欧几里得在《几何原本》中记载了用尺规作某种六边形的方法,其步骤是:①在⊙O上任取一点A,连接AO并延长交⊙O于点B,BO为半径作圆孤分别交⊙O于C,D两点,DO并延长分交⊙O于点E,F;④顺次连接BC,FA,AE,DB,得到六边形AFCBDE.连接AD,交于点G,则下列结论错误的是.A.△AOE的内心与外心都是点GB.∠FGA=∠FOAC.点G是线段EF的三等分点D.EF=AF【答案】D【解析】【分析】证明△AOE是等边三角形,EF⊥OA,AD⊥OE,可判断A;.证明∠AGF=∠AOF=60°,可判断B;证明FG=2GE,可判断C;证明EF=AF,可判断D.【详解】解:如图,在正六边形AEDBCF中,∠AOF=∠AOE=∠EOD=60°,∵OF=OA=OE=OD,∴△AOF,△AOE,△EOD都是等边三角形,∴AF=AE=OE=OF,OA=AE=ED=OD,∴四边形AEOF,四边形AODE都是菱形,∴AD⊥OE,EF⊥OA,∴△AOE的内心与外心都是点G,故A正确,∵∠EAF=120°,∠EAD=30°,∴∠FAD=90°,∵∠AFE=30°,∴∠AGF=∠AOF=60°,故B正确,∵∠GAE=∠GEA=30°,∴GA=GE,∵FG=2AG,∴FG=2GE,∴点G是线段EF的三等分点,故C正确,∵AF=AE,∠FAE=120°,∴EF=AF,故D错误,故答案为:D.【点睛】本题考查作图-复杂作图,等边三角形的判定和性质,菱形的判定和性质,三角形的内心,外心等知识,解题的关键是证明四边形AEOF,四边形AODE都是菱形.12.在直角坐标系中,若三点A(1,﹣2),B(2,﹣2),C(2,0)中恰有两点在抛物线y=ax2+bx﹣2(a>0且a,b均为常数)的图象上,则下列结论正确是().A.抛物线的对称轴是直线B.抛物线与x轴的交点坐标是(﹣,0)和(2,0)C.当t>时,关于x的一元二次方程ax2+bx﹣2=t有两个不相等的实数根D.若P(m,n)和Q(m+4,h)都是抛物线上的点且n<0,则.【答案】ACD【解析】【分析】利用待定系数法将各点坐标两两组合代入,求得抛物线解析式为,再根据对称轴直线求解即可得到A选项是正确答案,由抛物线解析式为,令,求解即可得到抛物线与x轴的交点坐标(-1,0)和(2,0),从而判断出B选项不正确,令关于x的一元二次方程的根的判别式当,解得,从而得到C选项正确,根据抛物线图象的性质由,推出,从而推出,得到D选项正确.【详解】当抛物线图象经过点A和点B时,将A(1,-2)和B(2,-2)分别代入,得,解得,不符合题意,当抛物线图象经过点B和点C时,将B(2,-2)和C(2,0)分别代入,得,此时无解,当抛物线图象经过点A和点C时,将A(1,-2)和C(2,0)分别代入得,解得,因此,抛物线经过点A和点C,其解析式为,抛物线的对称轴为直线,故A选项正确,因为,所以,抛物线与x轴的交点坐标是(-1,0)和(2,0),故B选项不正确,由得,方程根的判别式当,时,,当时,即,解得,此时关于x的一元二次方程有两个不相等的实数根,故C选项正确,因为抛物线与x轴交于点(-1,0)和(2,0),且其图象开口向上,若P(m,n)和Q(m+4,h)都是抛物线上的点,且n<0,得,又得,所以h>0,故D选项正确.故选ACD.【点睛】本题考查抛物线与x轴的交点、根的判别式、二次函数的性质及二次函数图象上点的坐标特征,解题的关键是利用数形结合思想,充分掌握求二次函数的对称轴及交点坐标的解答方法.三、填空题(共4小题,每小题4分,共16分.只填写最后结果.)13.甲、乙、丙三名同学观察完某个一次函数的图象,各叙述如下:甲:函数的图象经过点(0,1);乙:y随x的增大而减小;丙:函数的图象不经过第三象限.根据他们的叙述,写出满足上述性质的一个函数表达式为_______.【答案】y=-x+1(答案不唯一).【解析】【分析】设一次函数解析式为y=kx+b,根据函数的性质得出b=1,k<0,从而确定一次函数解析式,本题答案不唯一.【详解】解:设一次函数解析式为y=kx+b,∵函数的图象经过点(0,1),∴b=1,∵y随x的增大而减小,∴k<0,取k=-1,∴y=-x+1,此函数图象不经过第三象限,∴满足题意的一次函数解析式为:y=-x+1(答案不唯一).【点睛】本题考查一次函数的性质,数形结合是解题的关键.14.若x<2,且,则x=_______.【答案】1【解析】【分析】先去掉绝对值符号,整理后方程两边都乘以x﹣2,求出方程的解,再进行检验即可.【详解】解:|x﹣2|+x﹣1=0,∵x<2,∴方程为2﹣x+x﹣1=0,即1,方程两边都乘以x﹣2,得1=﹣(x﹣2),解得:x=1,经检验x=1是原方程的解,故答案为:1.【点睛】本题考查了解分式方程和绝对值,能把分式方程转化成整式方程是解此题的关键.15.在直角坐标系中,点A1从原点出发,沿如图所示的方向运动,到达位置的坐标依次为:A2(1,0),A3(1,1),A4(﹣1,1),A5(﹣1,﹣1),A6(2,﹣1),A7(2,2),….若到达终点An(506,﹣505),则n的值为_______.【答案】2022【解析】【分析】终点在第四象限,寻找序号与坐标之间的关系可求n的值.【详解】解:∵是第四象限的点,∴落在第四象限.∴在第四象限的点为∵∴故答案为:2022【点睛】本题考查了点坐标的位置及坐标变化规律的知识点,善于观察并寻找题目中蕴含的规律是解题的关键.16.如图,在直角坐标系中,O为坐标原点与(a>b>0)在第一象限的图象分别为曲线C1,C2,点P为曲线C1上的任意一点,过点P作y轴的垂线交C2于点A,作x轴的垂线交C2于点B,则阴影部分的面积S△AOB=_______.(结果用a,b表示)【答案】a【解析】【分析】设B(m,),A(,n),则P(m,n),阴影部分的面积S△AOB=矩形的面积﹣三个直角三角形的面积可得结论.【详解】解:设B(m,),A(,n),则P(m,n),∵点P为曲线C1上的任意一点,∴mn=a,∴阴影部分的面积S△AOB=mnbb(m)(n)=mn﹣b(mn﹣b﹣b)=mn﹣bmn+ba.故答案为:a.【点睛】本题考查了反比例函数的系数k的几何意义,矩形的面积,反比例函数图象上点的坐标特征等知识,本题利用参数表示三角形和矩形的面积并结合mn=a可解决问题.四、解答题(共7小题,共68分.解答要写出必要的文字说明、证明过程或演算步骤)17.(1)计算:;(2)先化简,再求值:(x,y)是函数y=2x与的图象的交点坐标.【答案】(1)9;(2)y-x,1或-1.【解析】【分析】(1)根据实数的运算法则计算;(2)首先根据图象交点的求法得到x与y的值,再对原式进行化简,然后把x与y的值代入化简后的算式可得解.【详解】解:(1)原式=1+9+(1-×18)=1+9-1=9;(2)由已知可得:,解之可得:或,∵原式===y-x,∴当时,原式=2-1=1;当时,原式=-2-(-1)=-1;∴原式的值为1或-1.【点睛】本题考查实数与函数的综合应用,熟练掌握实数的运算法则、分式的化简与求值、函数图象交点的求法是解题关键.18.如图,某海岸线M的方向为北偏东75°,甲、乙两船同时出发向C处海岛运送物资.甲船从港口A处沿北偏东45°方向航行,其中乙船的平均速度为v.若两船同时到达C处海岛,求甲船的平均速度.(结果用v表示.参考数据:≈1.4,≈1.7)【答案】1.4v【解析】【分析】过点C作AM的垂线,构造直角三角形,可得△ACD是含有30°角的直角三角形,△BCD是含有45°角的直角三角形,设辅助未知数,表示AC,BC,再根据时间相等即可求出甲船的速度.【详解】解:过点C作CD⊥AM,垂足为D,由题意得,∠CAD=75°-45°=30°,∠CBD=75°-30°=45°,设CD=a,则BD=a,BC=a,AC=2CD=2a,∵两船同时到达C处海岛,∴t甲=t乙,即,∴,∴V甲=≈1.4v.【点睛】本题考查了解直角三角形,掌握直角三角形的边角关系是正确解答的前提,作垂线构造直角三角形是解决问题的关键.19.从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下的5组(满分为100分):A组:50≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100,分别制成频数分布直方图和扇形统计图如图.(1)根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;(3)若甲、乙两班参加测试的学生成绩统计如下:甲班:62,64,66,76,76,77,82,83,83,91;乙班:51,52,69,70,71,71,88,89,99,100.则可计算得两班学生的样本平均成绩为x甲=76,x乙=76;样本方差为s甲2=80,s乙2=275.4.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.【答案】(1)图见解析;平均成绩为76.5;(2);(3)甲班的数学素养总体水平好.【解析】【分析】(1)由D组所占百分比求出D组的人数,再根据A、B、E、D组的人数求出C组人数,即可补全频数分布直方图,再求出样本平均数即可;(2)画树状图,共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,再由概率公式求解即可;(3)由两班样本方差的大小作出判断即可.【详解】解:(1)D组人数为:20×25%=5(人),C组人数为:20﹣(2+4+5+3)=6(人),补充完整频数分布直方图如下:估算参加测试的学生的平均成绩为:76.5(分);(2)把4个不同的考场分别记为:1、2、3、4,画树状图如图:共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,∴小亮、小刚两名同学被分在不同考场的概率为;(3)∵样本方差为s甲2=80,s乙2=275.4,∴s甲2<s乙2,∴甲班的成绩稳定,∴甲班数学素养总体水平好.【点睛】本题考查了用列表法或画树状图法求概率以及频数分布直方图和扇形统计图等知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.某山村经过脱贫攻坚和乡村振兴,经济收入持续增长.经统计,近五年该村甲农户年度纯收入如表所示:年度(年)201620172018201920202021年度纯收入(万元)1.52.54.57.511.3若记2016年度为第1年,在直角坐标系中用点(1,15),(2,2.5),(3,4.5),(4,7.5),(5,11.3)表示近五年甲农户纯收入的年度变化情况.如图所示(m>0),y=x+b(k>0),y=ax2﹣0.5x+c(a>0),以便估算甲农户2021年度的纯收入.(1)能否选用函数(m>0)进行模拟,请说明理由;(2)你认为选用哪个函数模拟最合理,请说明理由;(3)甲农户准备在2021年底购买一台价值16万元农机设备,根据(2)中你选择的函数表达式,预测甲农户2021年度的纯收入能否满足购买农机设备的资金需求.【答案】(1)不能选用函数(m>0)进行模拟,理由见解析;(2)选用y=ax2-0.5x+c(a>0)满足模拟,理由见解析;(3)满足,理由见解析.【解析】【分析】(1)根据m=xy是否为定值即可判断和说明理由;(2)通过点的变化可知不是一次函数,由(1)可知不是反比例,则可判断选用二次函数模拟最合理;(3)利用已知点坐标用待定系数法求出解析式,然后计算出2021年即第6年度纯收入y,然后比较结果即可.【详解】解:(1)不能选用函数(m>0)进行模拟,理由如下:∵1×1.5=1.5,2×2.5=5,…∴1.5≠5∴不能选用函数(m>0)进行模拟;(2)选用y=ax2-0.5x+c(a>0),理由如下:由(1)可知不能选用函数(m>0),由(1,1.5),(2,2.5),(3,4.5),(4,7.5),(5,11.3)可知x每增大1个单位,y的变化不均匀,则不能选用函数y=x+b(k>0),故只能选用函数y=ax2-0.5x+c(a>0)进行模拟;(3)由点(1,1.5),(2,2.5)在y=ax2-0.5x+c(a>0)上则,解得:∴y=0.5x2-0.5x+1.5当x=6时,y=0.5×36-0.5×6+1.5=16.5,∵16.5>16,∴甲农户2021年度的纯收入满足购买农机设备的资金需求.【点睛】本题主要考查了二次函数的图象特征、反比例函数的图象特征、待定系数法求二次函数的解析式以及二次函数的函数值等知识点,根据图象特征、正确判断函数的种类成为解答本题的关键.21.如图,半圆形薄铁皮的直径AB=8,点O为圆心(不与A,B重合),连接AC并延长到点D,使AC=CD,作DH⊥AB,交半圆、BC于点E,F,连接OC,∠ABC=θ,θ随点C的移动而变化.(1)移动点C,当点H,B重合时,求证:AC=BC;(2)当θ<45°时,求证:BH•AH=DH•FH;(3)当θ=45°时,将扇形OAC剪下并卷成一个圆锥的侧面,求该圆锥的底面半径和高.【答案】(1)见解析(2)见解析(3)底面半径1,高为【解析】【分析】(1)根据直角三角形的性质即可求解;(2)证明△BFH∽△DAH,即可求解;(3)根据扇形与圆锥的特点及求出圆锥的底面半径,再根据勾股定理即可求出圆锥的高.【详解】(1)如图,当点H,B重合时,∵DH⊥AB∴△ADB是直角三角形,∵AC=CD,∴BC是△ADB的中线∴BC=∴AC=BC(2)当θ<45°时,DH交半圆、BC于点E,F,∵AB是直径∴∠ACB=90°∵DH⊥AB∴∠B+∠A=∠A+∠D=90°∴∠B=∠D∵∠BHF=∠DHA=90°∴△BFH∽△DAH,∴∴BH•AH=DH•FH;(3)∵∠ABC=θ=45°∴∠AOC=2∠ABC=90°∵直径AB=8,∴半径OA=4,设扇形OAC卷成圆锥的底面半径为r∴解得r=1∴圆锥的高为.【点睛】此题主要考查圆内综合求解,解题的关键是熟知直角三角形的性质、相似三角形的判定与性质及弧长的求解与圆锥的特点.22.如图,在直角坐标系中,O为坐标原点,抛物线顶点为M(2,﹣),抛物线与x轴的一个交点为A(4,0),点B(2,),点C(-2,)(1)判断点C是否在该抛物线上,并说明理由;(2)顺次连接AB,BC,CO,求四边形AOCB的面积;(3)设点P是抛物线上AC间的动点,连接PC、AC,△PAC的面积S随点P的运动而变化;当S的值为2时,求点P的横坐标的值.【答案】(1)在抛物线上,理由见解析(2)(3)-+1或+1【解析】【分析】(1)求出抛物线解析式,故可判断;(2)证明四边形AOCB是平行四边形,故可求解;(3)先求出直线AC的解析式,过P点做y轴的平行线交AC于Q点,表示出△PAC的面积,故可求解.【详解】(1)∵抛物线顶点为M(2,﹣),可设抛物线为y=a(x-2)2-代入A(4,0)得0=a(4-2)2-解得a=∴抛物线为y=(x-2)2-=x2-x当x=-2时,y=×(-2)2-×(-2)=∴点C(-2,)在抛物线上;(2)如图,连接AB,BC,CO,∵B(2,),C(-2,)∴BCAO,BC=2-(-2)=4=OA∴BC=AO∴四边形AOCB是平行四边形∴四边形AOCB的面积为4×=(3)设直线AC的解析式为y=kx+b把A(4,0),C(-2,)代入得解得∴直线AC的解析式为y=x+过P点作y轴的平行线交AC于Q点,设P(x,x2-x),则Q(x,x+)∵△PAC的面积S=∴解得x1=-+1,x2=+1∴点P的横坐标为-+1或+1.【点睛】此题主要考查二次函数综合,解题的关键是熟知待定系数法的应用、平行四边形的平行与性质、三角形的面积求解方法.23.如图1,在△ABC中,∠C=90°,∠ABC=30°,AC=1,D为△ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:△BDA≌△BFE;(2)①CD+DF+FE的最小值为;②当CD+DF+FE取得最小值时,求证:AD∥BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.【答案】(1)见解答;(2)①;②见解答;(3)是,∠MPN=30°.【解析】【分析】(1)由旋转60°知,∠ABD=∠EBF、AB=AE、BD=BF,故由SAS证出全等即可;(2)①由两点之间,线段最短知C、D、F、E共线时CD+DF+FE最小,且CD+DF+FE最小值为CE,再由∠ACB=90°,∠ABC=30°,AC=1求出BC和AB,再由旋转知AB=BE,∠CBE=90°,最后根据勾股定理求出CE即可;②先由△BDF为等边三角形得∠BFD=60°,再由C、D、F、E共线时CD+DF+FE最小,∠BFE=120°=∠BDA,最后ADF=∠ADB-∠BDF=120°-60°=60°,即证;(3)由中位线定理知道MN∥AD且PN∥EF,再设∠BEF=∠BAD=α,∠PAN=β,则∠PNF=60°-α+β,∠FNM=∠FAD=60°+α-β,得∠PNM=120°.【详解】解:(1)证明:∵∠DBF=∠ABE=60°,∴∠DBF-∠ABF=∠ABE-∠ABF,∴∠ABD=∠EBF,在△BDA与△BFE中,,∴△BDA≌△BFE(SAS);(2)①∵两点之间,线段最短,即C、D、F、E共线时CD+DF+FE最小,∴CD+DF+FE最小值为CE,∵∠ACB=90°,∠ABC=30°,AC=1,∴BE=AB=2,BC=,∵∠CBE=∠ABC+∠ABE=90°,∴CE=,故答案为:;②证明:∵BD=BF,∠DBF=60°,∴△BDF为等边三角形,即∠BFD=60°,∵C、D、F、E共线时CD+DF+FE最小,∴∠BFE=120°,∵△BDA≌△BFE,∴∠BDA=120°,∴∠ADF=∠ADB-∠BDF=120°-60°=60°,∴∠ADF=∠BFD,∴AD∥BF;(3)∠MPN的大小是为定值,理由如下:如图,连接MN,∵M,N,P分别是DF,AF,AE的中点,∴MN∥AD且PN∥EF,∵AB=BE且∠ABE=60°,∴△ABE为等边三角形,设∠BEF=∠BAD=α,∠PAN=β,则∠AEF=∠APN=60°-α,∠EAD=60°+α,∴∠PNF=60°-α+β,∠FNM=∠FAD=60°+α-β,∴∠PNM=∠PNF+∠FNM=60°-α+β+60°+α-β=120°,∵△BDA≌△BFE,∴MN=AD=FE=PN,∴∠MPN=(180°-∠PNM)=30°.【点睛】本题是三角形与旋转变换综合应用,熟练掌握旋转的性质、三角形全等的判定与性质、平行线的判定、勾股定理的应用、中位线的性质及等腰、等边三角形的判定与性质是解题关键.中考模拟考试数学试卷(二)一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中只有一项符合题目要求.)1.下列各数中,是负数的是()A.|﹣2|B.C.(-1)0D.﹣322.如图所示几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.3.已知一个水分子的直径约为3.85×10﹣9米,某花粉的直径约为5×10﹣4米,用科学记数法表示一个水分子的直径是这种花粉直径的()A.0.77×10﹣5倍B.77×10﹣4倍C.7.7×10﹣6倍D.7.7×10﹣5倍4.如图,AB∥CD∥EF,若∠ABC=130°,∠BCE=55°,则∠CEF的度数为()A.95°B.105°C.110°D.115°5.为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池数/节45678人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是()A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节6.下列运算正确是()A.a2•a4=a8B.﹣a(a﹣b)=﹣a2﹣abC.(﹣2a)2÷(2a)﹣1=8a3D.(a﹣b)2=a2﹣b27.关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或28.如图,A,B,C是半径为1的⊙O上的三个点,若AB=,∠CAB=30°,则∠ABC的度数为()A95°B.100°C.105°D.110°9.若﹣3<a≤3,则关于x方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤510.已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=的图象在同一坐标系中大致为()A.B.C.D.11.如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.()B.()C.()D.()12.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.计算:=_______.14.有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________.15.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为____________.16.用一块弧长16πcm扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm217.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为__________.三、解答题(本题共8个小题,共69分解答题应写出文字说明、证明过程或推演步骤18.先化简,再求值:,其中a=﹣.19.为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:请根据以上的信息,回答下列问题:(1)抽取的学生有人,n=,a=;(2)补全条形统计图;(3)若该校有学生3200人,估计参加书法社团活动的学生人数.20.为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?21.如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.22.时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6(1)求k值和点D的坐标;(2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.24.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF和CD的长.25.如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将ABC沿BC所在直线折叠,得到DBC,点A的对应点D是否落在抛物线的对称轴上,若点D在对称轴上,请求出点D的坐标;若点D不在对称轴上,请说明理由;(3)若点P是抛物线位于第三象限图象上的一动点,连接AP交BC于点Q,连接BP,BPQ的面积记为S1,ABQ的面积记为S2,求的值最大时点P的坐标.答案解析一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中只有一项符合题目要求.)1.下列各数中,是负数的是()A.|﹣2|B.C.(-1)0D.﹣32【答案】D【解析】【分析】先求出各个运算结果,继而即可判断正负性.【详解】解:A.|﹣2|=2,是正数,不符合题意,B.(﹣)2=5,是正数,不符合题意,C.(﹣1)0=1是正数,不符合题意,D.﹣32=-9是负数,符合题意,故选D.【点睛】本本题主要考查正负数的概念,掌握乘方运算,零指数幂运算以及绝对值的意义,是解题的关键.2.如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.【答案】A【解析】【分析】根据俯视图的定义及画图规则,画出俯视图,再与各选项进行对比即可找出正确答案.【详解】解:从上向下看几何体时,外部轮廓如图1所示:∵上半部有圆孔,且在几何体内部,看不见的轮廓线画虚线,∴整个几何体的俯视图如图2所示:故选:A【点睛】本题考查了三视图知识点,熟知左视图的定义和画三视图的规则是解题的关键.3.已知一个水分子的直径约为3.85×10﹣9米,某花粉的直径约为5×10﹣4米,用科学记数法表示一个水分子的直径是这种花粉直径的()A.0.77×10﹣5倍B.77×10﹣4倍C.7.7×10﹣6倍D.7.7×10﹣5倍【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】由题意得:(3.85×10﹣9)÷(5×10﹣4)=7.7×10﹣6倍,故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,AB∥CD∥EF,若∠ABC=130°,∠BCE=55°,则∠CEF的度数为()A.95°B.105°C.110°D.115°【答案】B【解析】【分析】由平行的性质可知,再结合即可求解.【详解】解:故答案是:B.【点睛】本题考查平行线的性质和角度求解,难度不大,属于基础题.解题的关键是掌握平行线的性质.5.为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池数/节45678人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是()A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节【答案】D【解析】【分析】根据样本定义可判定A,利用众数定义可判定B,利用中位数定义可判定C,利用加权平均数计算可判定D即可.【详解】解:A.随机抽取40名学生对收集废旧电池的数量是样本,故选项A样本为40名学生不正确;B.根据众数定义重复出现次数最多的数据是5节或6节,故选项B众数是11节不正确,C.根据中位数定义样本容量为40,中位数位于两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数节,故选项C中位数是6节不正确;D.根据样本平均数节故选项D平均数是5.6节正确.故选择:D.【点睛】本题考查样本,众数,中位数,平均数,熟练掌握样本,众数,中位数,平均数是解题关键.6.下列运算正确的是()A.a2•a4=a8B.﹣a(a﹣b)=﹣a2﹣abC.(﹣2a)2÷(2a)﹣1=8a3D.(a﹣b)2=a2﹣b2【答案】C【解析】【分析】依次分析各选项,利用同底数幂的乘法法则、单项式乘多项式、积的乘方、负整数指数幂、同底数幂的除法、乘法公式进行运算即可得出A、B、D三个选项错误,只有A选项正确.【详解】解:∵,,,故A、B、D三个选项错误;∵,∴C选项正确,故选:C.【点睛】本题考查了同底数幂的乘法运算、单项式乘多项式、积的乘方运算、负整数指数幂、同底数幂的除法运算、乘法公式等内容,解决本题的关键是牢记公式与定义,本题虽属于基础题,但其计算中容易出现符号错误,因此应加强学生的符号运算意识,提高运算能力与技巧等.7.关于x的方程x2+4kx+2k2=4的一个解是﹣2,则k值为()A.2或4B.0或4C.﹣2或0D.﹣2或2【答案】B【解析】【分析】把x=-2代入方程即可求得k的值;【详解】解:将x=-2代入原方程得到:,解关于k的一元二次方程得:k=0或4,故选:B.【点睛】此题主要考查了解一元二次方程相关知识点,代入解求值是关键.8.如图,A,B,C是半径为1的⊙O上的三个点,若AB=,∠CAB=30°,则∠ABC的度数为()A.95°B.100°C.105°D.110°【答案】C【解析】【分析】连接OB,OC,根据勾股定理逆定理可得∠AOB=90°,∠ABO=∠BAO=45°,根据圆周角定理可得∠COB=2∠CAB=60°,∠OBC=∠OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,∵OA=OB=1,AB=,∴OA2+OB2=AB2,∴∠AOB=90°,又∵OA=OB,∴∠ABO=∠BAO=45°,∵∠CAB=30°,∴∠COB=2∠CAB=60°,又∵OC=OB,∴∠OBC=∠OCB=60°,∴∠ABC=∠ABO+∠OBC=105°,故选:C.【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键.9.若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为()A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5【答案】A【解析】【分析】先求出方程的解,再根据﹣3<a≤3的范围,即可求解.【详解】解:由x+a=2,得:x=2-a,∵﹣3<a≤3,∴﹣1≤2-a<5,即:﹣1≤x<5,故选A.【点睛】本题主要考查解一元一次方程以及不等式的性质,用含a的代数式表示x,是解题的关键.10.已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=的图象在同一坐标系中大致为()A.B.C.D.【答案】D【解析】【分析】先通过二次函数的图像确定a、b、c的正负,再利用x=1代入解析式,得到a+b+c的正负即可判定两个函数的图像所在的象限,即可得出正确选项.【详解】解:由图像可知:图像开口向下,对称轴位于y轴左侧,与y轴正半轴交于一点,可得:又由于当x=1时,因此一次函数的图像经过一、二、四三个象限,反比例函数的图像位于二、四象限;故选:D.【点睛】本题考查了二次函数的图像与性质、一次函数的图像与性质以及反比例函数的图像与性质,解决本题的关键是能读懂题干中的二次函数图像,能根据图像确定解析式中各系数的正负,再通过各项系数的正负判定另外两个函数的图像所在的象限,本题蕴含了数形结合的思想方法等.11.如图,在直角坐标系中,点A,B的坐标为A(0,2),B(﹣1,0),将△ABO绕点O按顺时针旋转得到△A1B1O,若AB⊥OB1,则点A1的坐标为()A.()B.()C.()D.()【答案】A【解析】【分析】先求出AB,OA1,再作辅助线构造相似三角形,如图所示,得到对应边成比例,求出OC和A1C,即可求解.【详解】解:如图所示,∵点A,B的坐标分别为A(0,2),B(﹣1,0),∴OB=1,OA=2,∴,∵∠AOB=90°,∴∠A1OB1=90°,∴OA1⊥OB1,又∵AB⊥OB1,∴OA1∥AB,∴∠1=∠2,过A1点作A1C⊥x轴,∴∠A1CO=∠AOB,∴,∴,∵OA1=OA=2,∴,∴,,∴,故选:A.【点睛】本题综合考查了勾股定理、旋转的性质、相似三角形的判定和性质等内容,解决本题的关键是理解并掌握相关概念,能通过作辅助线构造相似三角形等,本题蕴含了数形结合的思想方法等.12.如图,四边形ABCD中,已知AB∥CD,AB与CD之间的距离为4,AD=5,CD=3,∠ABC=45°,点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,已知点P的移动速度为每秒1个单位长度,设点P的移动时间为x秒,△APQ的面积为y,则能反映y与x之间函数关系的图象是()A.B.C.D.【答案】B【解析】【分析】依次分析当、、三种情况下的三角形面积表达式,再根据其对应图像进行判断即可确定正确选项.【详解】解:如图所示,分别过点D、点C向AB作垂线,垂足分别为点E、点F,∵已知AB∥CD,AB与CD之间的距离为4,∴DE=CF=4,∵点P,Q同时由A点出发,分别沿边AB,折线ADCB向终点B方向移动,在移动过程中始终保持PQ⊥AB,∴PQ∥DE∥CF,∵AD=5,∴,∴当时,P点在AE之间,此时,AP=t,∵,∴,∴,因此,当时,其对应的图像为,故排除C和D;∵CD=3,∴EF=CD=3,∴当时,P点位于EF上,此时,Q点位于DC上,其位置如图中的P1Q1,则,因此当时,对应图像为,即为一条线段;∵∠ABC=45°,∴BF=CF=4,∴AB=3+3+4=10,∴当时,P点位于FB上,其位置如图中的P2Q2,此时,P2B=10-t,同理可得,Q2P2=P2B=10-t,,因此当时,对应图像为,其为开口向下的抛物线的的一段图像;故选:B.【点睛】本题考查了平行线分线段成比例的推论、勾股定理、平行线的性质、三角形的面积公式、二次函数的图像等内容,解决本题的关键是牢记相关概念与公式,能分情况讨论等,本题蕴含了数形结合与分类讨论的思想方法等.二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.计算:=_______.【答案】4【解析】【分析】根据二次根式的运算法则,先算乘法,再算加减法,即可.【详解】解:原式====4.故答案是:4.【点睛】本题主要考查二次根式的混合运算,掌握二次根式的乘法法则,是解题的关键.14.有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是__________.【答案】【解析】【分析】由等边三角形、平行四边形、菱形、圆中,既是中心对称图形,又是轴对称图形的有菱形、圆,再画出树状图展示所有等可能的结果,进而即可求得答案.【详解】解:设等边三角形、平行四边形、菱形、圆分别为A,B,C,D,根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形既是中心对称图形,又是轴对称图形为C、D共有2种情况,∴P(既是中心对称图形,又是轴对称图形)=2÷12=.故答案是:.【点睛】本题考查了列表法和树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比,画出树状图,是解题的关键.15.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别点D和点E,AD与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为____________.【答案】【解析】【分析】由题意得:BF⊥AC,再根据三角形的面积公式,可得,进而即可得到答案.【详解】解:∵在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,∴BF⊥AC,∵AB=5,BC=4,AC=6,∴,∴,∴CE:AD:BF=,故答案是:.【点睛】本题主要考查三角形的高,掌握“三角形的三条高交于一点”是解题的关键.16.用一块弧长16πcm的扇形铁片,做一个高为6cm的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm2【答案】【解析】【分析】先求出圆锥的底面半径,再利用勾股定理求出圆锥的母线长,最后利用扇形的面积公式求解即可.【详解】解:∵弧长16πcm的扇形铁片,∴做一个高为6cm的圆锥的底面周长为16πcm,∴圆锥的底面半径为:16π÷2π=8cm,∴圆锥的母线长为:,∴扇形铁片的面积=cm2,故答案是:.【点睛】本题考查了圆锥与扇形,掌握圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,是解题的关键.17.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A,C分别在x轴,y轴上,B,D两点坐标分别为B(﹣4,6),D(0,4),线段EF在边OA上移动,保持EF=3,当四边形BDEF的周长最小时,点E的坐标为__________.【答案】【解析】【分析】先得出D点关于x轴的对称点坐标为H(0,-4),再通过转化,将求四边形BDEF的周长的最小值转化为求FG+BF的最小值,再利用两点之间线段最短得到当F、G、B三点共线时FG+BF的值最小,用待定系数法求出直线BG的解析式后,令y=0,即可求出点F的坐标,最后得到点E的坐标.【详解】解:如图所示,∵D(0,4),∴D点关于x轴的对称点坐标为H(0,-4),∴ED=EH,将点H向左平移3个单位,得到点G(-3,-4),∴EF=HG,EF∥HG,∴四边形EFGH是平行四边形,∴EH=FG,∴FG=ED,∵B(-4,6),∴BD=,又∵EF=3,∴四边形BDEF的周长=BD+DE+EF+BF=+FG+3+BF,要使四边形BDEF的周长最小,则应使FG+BF的值最小,而当F、G、B三点共线时FG+BF的值最小,设直线BG的解析式为:∵B(-4,6),G(-3,-4),∴,∴,∴,当y=0时,,∴,∴故答案:.【点睛】本题综合考查了轴对称的性质、最短路径问题、平移的性质、用待定系数法求一次函数的解析式等知识,解决问题的关键是“转化”,即将不同的线段之间通过转化建立相等关系,将求四边形的周长的最小值问题转化为三点共线和最短的问题等,本题蕴含了数形结合与转化的思想方法等.三、解答题(本题共8个小题,共69分解答题应写出文字说明、证明过程或推演步骤18.先化简,再求值:,其中a=﹣.【答案】;6【解析】【分析】先把分式化简后,再把a的值代入求出分式的值即可.【详解】解:原式=,当时,原式=6.【点睛】本题考查了分式的化简求值,熟练分解因式是解题的关键.19.为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:请根据以上的信息,回答下列问题:(1)抽取的学生有人,n=,a=;(2)补全条形统计图;(3)若该校有学生3200人,估计参加书法社团活动的学生人数.【答案】(1)200,54,25;(2)见解析;(3)800人【解析】【分析】(1)用乒乓球的人数除以乒乓球所占的百分比,即可求得样本容量,进而可分别求得n和a的值即可;(2)先计算出参加朗诵的人数,即可补全条形统计图;(3)先计算参加书法所占的百分比,再乘以2000,即可解答.【详解】解:(1)80÷40%=200(人),=54°,50÷200=25%,故答案为:200,54,25;(2)200-50-30-80=40(人),补全条形统计图如图所示∶(3)×3200=800(人).答:该校参加书法社团活动的约有800人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?【答案】(1)A种花弃每盆1元,B种花卉每盆1.5元;(2)购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元【解析】【分析】(1)设A种花弃每盆x元,B种花卉每盆(x+0.5)元,根据题意列分式方程,解出方程并检验;(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),w=t+1.5(6000-t)=-0.5t+9000,w随t的增大而减小,所以根据t的范围可以求得w的最小值.【详解】解:(1)设A种花弃每盆x元,B种花卉每盆(x+0.5)元.根据题意,得.解这个方程,得x=1.经检验知,x=1是原分式方程的根,并符合题意.此时x+0.5=1+0.5=1.5(元).所以,A种花弃每盆1元,B种花卉每盆1.5元.(2)设购买A种花卉∶t盆,购买这批花卉的总费用为w元,则t≤(6000-t),解得∶t≤1500.由题意,得w=t+1.5(6000-t)=-0.5t+9000.因为w是t的一次函数,k=-0.5<0,w随t的增大而减小,所以当t=1500盆时,w最小.w=-0.5×1500+9000=8250(元).所以,购买A种花卉1500盆时购买这批花卉总费用最低,最低费用为8250元.【点睛】本题主要考查了分式方程解决实际问题和一次函数求最值,根据等量关系列出方程和函数关系式及取值范围是解题关键.21.如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.【答案】(1)见解析;(2)24【解析】【分析】(1)根据题意可证明,得到OD=OE,从而根据“对角线互相平分的四边形为平行四边形”证明即可;(2)根据AB=BC,AO=CO,可证明BD为AC的中垂线,从而推出四边形AECD为菱形,然后根据条件求出DE的长度,即可利用菱形的面积公式求解即可.【详解】(1)证明:在△AOE和△COD中,∴.∴OD=OE.又∵AO=CO,∴四边形AECD是平行四边形.(2)∵AB=BC,AO=CO,∴BO为AC的垂直平分线,.∴平行四边形AECD是菱形.∵AC=8,.在Rt△COD中,CD=5,,∴,,∴四边形AECD的面积为24.【点睛】本题考查平行四边形的判定,菱形的判定与面积计算,掌握基本的判定方法,熟练掌握菱形的面积计算公式是解题关键.22.时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【答案】420米【解析】【分析】过D点分别作DEBC,DFAB,垂足分别是点E,点F.由三角函数可求,.可证四边形BEDF是矩形,可求AF=140,在Rt△ADF中,利用三角函数可求DF=AF·tan65°≈299.60.,可求BC=BE+CE≈420(米).【详解】解∶过D点分别作DEBC,DFAB,垂足分别是点E,点F.由题意得,=37°.在R△CDE中∵,,.,.∴四边形BEDF是矩形,∴BE=DF,BF=DE=160,∴AF=AB-BF=300-160=140.在Rt△ADF中,,∴DF=AF·tan65°≈140×2.14=299.60.∴BC=BE+CE=299.60+120≈420(米).所以,革命纪念碑与党史纪念馆之间的距离约为420米.【点睛】本题考查解直角三角形应用,矩形判定与性质,掌握锐角三角函数的定义与矩形判定和性质是解题关键.23.如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6(1)求k值和点D的坐标;(2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.【答案】(1),点D坐标为(4,3);(2)点E的坐标为(-8,2)【解析】【分析】(1)结合反比例函数的几何意义即可求解值;由轴可知轴,利用平行线分线段成比例即可求解D点坐标;(2)可知和的面积相等,由函数图像可知、、的面积关系,再结合题意,即可求CD边上高的关系,故作,垂足为F,即可求解E点横坐标,最后由E点在直线AB上即可求解.【详解】解∶(1)设点D坐标为(m,n),由题意得.∵点D在的图象上,.∵直线的图象与轴交于点A,∴点A的坐标为(-4,0).∵CHx轴,CH//y轴..点D在反比例函数的图象上,点D坐标为(4,3)(2)由(1)知轴,..过点E作EFCD,垂足为点F,交y轴于点M,..∴点E的横坐标为-8.∵点E在直线上,∴点E的坐标为(-8,2).【点睛】本题考查一次函数与反比例函数的综合运用、三角形面积问题、的几何意义,属于中档难度的综合题型.解题的关键是掌握一次函数与反比例函数的相关性质和数形结合思想.24.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,AE是直径,交BC于点H,点D在上,连接AD,CD过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF和CD的长.【答案】(1)见解析;(2),【解析】【分析】(1)因为AE是直径,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论