数学-专题06 全等三角形中的截长补短模型(原版)_第1页
数学-专题06 全等三角形中的截长补短模型(原版)_第2页
数学-专题06 全等三角形中的截长补短模型(原版)_第3页
数学-专题06 全等三角形中的截长补短模型(原版)_第4页
数学-专题06 全等三角形中的截长补短模型(原版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题06全等三角形中的截长补短模型【模型展示】特点如图,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围。解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值【证明】延长AD至E,使DE=AD,连接BE,如图所示,∵AD是BC边上的中线,∴BD=CD在△BDE和△CDA中,BD=CD∠BDE=∠ADCDE=AE∴△BDE≌△CDA(SAS)∴BE=AC=8在△ABE中,由三角形的三边关系得:AB-BE<AE<AB+BE∴12-8<AE<12+8∴2<AD<10结论截长法和补短法在证明线段的和、差、倍、分等问题中有着广泛的应用.具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题.

【模型证明】解决方案如图,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.【证明】延长FD至点M,使DM=DF,连接BM,EM,如图所示,同上例得△BMD≌△CFD(SAS)∴BM=CF∵DE⊥DF,DM=DF∴EM=EF在△BME中,由三角形的三边关系得:BE+BM>EM如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【证明】延长AB至点N,使BN=DF,连接CN,如图所示∵∠ABC+∠D=180°,∠NBC+∠ABC=180°∴∠NBC=∠D在△NBC和△FDC中

BN=DF∠NBC=∠DBC=DC∴△NBC≌△FDC(SAS)∴CN=CF,∠NCB=∠FCD∵∠BCD=140°,∠ECF=70°∴∠BCE+∠FCD=70°∴∠ECN=70°=∠ECF在△NCE和△FCE中CN=CF∠ECN=∠ECFCE=CE∴△NCE≌△FCE(SAS)∴EN=EF∴BE+DF=EF.【题型演练】一、解答题1.阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在中,AD平分,.求证:.李老师给出了如下简要分析:“要证就是要证线段的和差问题,所以有两个方法,方法一:‘截长法’如图2,在AC上截取,连接DE,只要证__________即可,这就将证明线段和差问题__________为证明线段相等问题,只要证出____________________,得出及_________,再证出_____________________,进而得出,则结论成立.此种证法的基础是‘已知AD平分,将沿直线AD对折,使点B落在AC边上的点E处’成为可能.

方法二:“补短法”如图3,延长AB至点F,使.只要证即可.此时先证__________,再证出__________________,则结论成立.”“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.2.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,是等边三角形,点是边下方一点,,探索线段、、之间的数量关系.解题思路:延长到点,使,连接,根据,可证,易证得≌,得出是等边三角形,所以,从而探寻线段、、之间的数量关系.根据上述解题思路,请写出、、之间的数量关系是______,并写出证明过程;【拓展延伸】(2)如图2,在中,,,若点是边下方一点,,探索线段、、之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离的平方为多少?

3.如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.(1)依题意补全图形,并直接写出∠AEB的度数;(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.请根据上述分析过程,完成解答过程.4.阅读材料:“截长补短法”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系.截长,即在长线段上截取一条线段等于其中一条短线段,再证明剩下的部分等于另一条短线段;补短,即延长其中一条短线段,使延长部分等于另一条线段,再证明延长后的线段等于长线段.依据上述材料,解答下列问题:如图,在等边中,点E是边AC上一定点,点D是直线BC上一动点,以DE为边作等边,连接CF.(1)如图,若点D在边BC上,试说明;(提示:在线段CD上截取,连接EG.)(2)如图,若点D在边BC的延长线上,请探究线段CE,CF与CD之间的数量关系并说明理由.

5.在“教、学、练、评一体化”学习活动手册中,全等三角形专题复习课,学习过七种作辅助线的方法,其中有“截长补短”作辅助线的方法.截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.请用这两种方法分别解决下列问题:已知,如图,在△ABC中,AB>AC,∠1=∠2,P为AD上任一点,求证:AB-AC>PB-PC6.例:截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:将△ABD绕点A逆时针旋转60°得到△ACE,可得AE=AD,CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则∠ACE+∠ACD=180°,易知△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.

7.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为cm2.(2)请你用上面学到的方法完成下面的习题.

如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.8.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.(1)如图①,△是等边三角形,点是边下方一点,连结,且,探索线段之间的数量关系.解题思路:延长到点,使,连接,根据,则,因为可证,易证得△≌△,得出△是等边三角形,所以,从而探寻线段之间的数量关系.根据上述解题思路,请直接写出之间的数量关系是;【拓展延伸】(2)如图②,在Rt△中,,.若点是边下方一点,

,探索线段之间的数量关系,并说明理由;【知识应用】(3)如图③,两块斜边长都为2cm的三角板,把斜边重叠摆放在一起,已知所对直角边等于斜边一半,则的长为_____________cm.(结果无需化简)9.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是______;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为4cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长为______cm.10.现阅读下面的材料,然后解答问题:

截长补短法,是初中数学几何题中一种常见辅助线的做法.在证明线段的和、差、倍、分等问题中有着广泛的应用.截长法:在较长的线段上截一条线段等于较短线段,而后再证明剩余的线段与另一段线段相等.补短法:就是延长较短线段与较长线段相等,而后证延长的部分等于另一条线段.请用截长法解决问题(1)(1)已知:如图1等腰直角三角形中,,是角平分线,交边于点.求证:.请用补短法解决问题(2)(2)如图2,已知,如图2,在中,,是的角平分线.求证:.11.数学课上,小白遇到这样一个问题:如图1,在等腰中,,,,求证;在此问题的基础上,老师补充:过点作于点交于点,过作交于点,交于点,试探究线段,,之间的数量关系,并说明理由.小白通过研究发现,与有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:

(1)求证;(2)猜想与的数量关系,并证明;(3)探究线段,,之间的数量关系,并证明.12.【初步探索】截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系;【灵活运用】(2)如图2,△ABC为等边三角形,直线a∥AB,D为BC边上一点,∠ADE交直线a于点E,且∠ADE=60°.求证:CD+CE=CA;【延伸拓展】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在

CD的延长线上,满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.13.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.14.【阅读】在证明线段和差问题时,经常采用截长补短法,再利用全等图形求线段的数量关系.截长法:将较长的线段截取为两段,证明截取的两段分别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论