人教版九年级数学下册 27.2.2 相似三角形的性质(原卷版+解析)_第1页
人教版九年级数学下册 27.2.2 相似三角形的性质(原卷版+解析)_第2页
人教版九年级数学下册 27.2.2 相似三角形的性质(原卷版+解析)_第3页
人教版九年级数学下册 27.2.2 相似三角形的性质(原卷版+解析)_第4页
人教版九年级数学下册 27.2.2 相似三角形的性质(原卷版+解析)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十七章相似27.2.2相似三角形的性质一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC∽△DEF,A、B分别对应D、E,且AB:DE=1:2,那么下列等式一定成立的是A.BC:DE=1:2 B.△ABC的面积:△DEF的面积=1:2 C.∠A的度数:∠D的度数=1:2 D.△ABC的周长:△DEF的周长=1:2 2.如图,AB、CD、EF都与BD垂直,且AB=1,CD=3,那么EF的长是A. B. C. D. 3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 4.已知:如图,E是ABCD的边AD上的一点,且,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cm C.6cm D.9cm 5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9 C.3:1 D.1:3 6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63° B.72° C.73° D.83° 7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A. B.1 C. D. 二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是,如果小三角形的面积是9,那么大三角形的面积是__________.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.学-科网10.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)13.如图所示,Rt△ABC∽Rt△DFE,CM、EN分别是斜边AB、DF上的中线,已知AC=9cm,CB=12cm,DE=3cm.(1)求CM和EN的长;(2)你发现的值与相似比有什么关系?得到什么结论?14.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=48°,CD是△ABC的完美分割线,且AD=CD,则∠ACB=__________°.(2)如图2,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.

第二十七章相似27.2.2相似三角形的性质一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果△ABC∽△DEF,A、B分别对应D、E,且AB:DE=1:2,那么下列等式一定成立的是A.BC:DE=1:2 B.△ABC的面积:△DEF的面积=1:2 C.∠A的度数:∠D的度数=1:2 D.△ABC的周长:△DEF的周长=1:2 【答案】D2.如图,AB、CD、EF都与BD垂直,且AB=1,CD=3,那么EF的长是A. B. C. D. 【答案】C【解析】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴,,∴=1.∵AB=1,CD=3,∴=1,∴EF=.故选C.3.已知:如图,在ABCD中,AE:EB=1:2,则FE:FC=A.1:2 B.2:3 C.3:4 D.3:2 【答案】B【解析】在ABCD中,AB=CD,AB∥CD,∵BE=2AE,∴BE=AB=CD,∵AB∥CD,∴==,故选B.4.已知:如图,E是ABCD的边AD上的一点,且,CE交BD于点F,BF=15cm,则DF的长为A.10cm B.5cm C.6cm D.9cm 【答案】C【解析】∵四边形ABCD是平行四边形,点E在边AD上,∴DE∥BC,且AD=BC,∴∠DEF=∠BCF;∠EDF=∠CBF,∴△EDF∽△CBF,∴,∵,∴设AE=3k,DE=2k,则AD=BC=5k,,∵BF=15cm,∴DF=═6cm.故选C.5.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则△DEF与△ABC的面积之比为A.9:1 B.1:9 C.3:1 D.1:3 【答案】B【解析】∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴△ABC与△DEF的相似比为3,∴△DEF与△ABC的相似比为1:3,∴△DEF与△ABC的面积之比为1:9,故选B.6.如图,△ABC∽△AB'C',∠A=35°,∠B=72°,则∠AC'B'的度数为A.63° B.72° C.73° D.83° 【答案】C【解析】∵∠A+∠B+∠C=180°,∠A=35°,∠B=72°,∴∠C=180°–35°–72°=73°,∵△ABC∽△AB'C',∴∠AC′B′=∠C=73°,故选C.7.如图,△ABC中,E为AB中点,AB=6,AC=4.5,∠ADE=∠B,则CD=A. B.1 C. D. 【答案】C【解析】∵E为AB中点,∴AE=AB,∵∠ADE=∠B,∠A=∠A,∴△ADE∽△ABC,∴,∴AB2=AD•AC,∴AD=4,∴CD=AC–AD=0.5,故选C.二、填空题:请将答案填在题中横线上.8.两个三角形相似,相似比是,如果小三角形的面积是9,那么大三角形的面积是__________.【答案】36【解析】∵两个三角形相似,相似比是,∴两个三角形的面积比是,∵小三角形的面积是9,∴大三角形的面积是36,故答案为:36.9.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为__________.【答案】或310.如图,在△ABC纸板中,AC=4,BC=2,AB=5,P是AC上一点,过点P沿直线剪下一个与△ABC相似的小三角形纸板,如果有4种不同的剪法,那么AP长的取值范围是__________.【答案】3≤AP<4【解析】如图所示,过P作PD∥AB交BC于D或PE∥BC交AB于E,则△PCD∽△ACB或△APE∽△ACB,此时0<AP<4;如图所示,过P作∠APF=∠B交AB于F,则△APF∽△ABC,此时0<AP≤4;如图所示,过P作∠CPG=∠CBA交BC于G,则△CPG∽△CBA,此时,△CPG∽△CBA,当点G与点B重合时,CB2=CP×CA,即22=CP×4,∴CP=1,AP=3,∴此时,3≤AP<4;综上所述,AP长的取值范围是3≤AP<4.故答案为:3≤AP<4.11.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),且△CDE与△ABC相似,则点E的坐标是__________.【答案】(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).【解析】在△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.①当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;②当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC;③当点E的坐标为(6,2)时,∠ECD=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC;同理,当点E的坐标为(4,2)、(4,5)、(4,0),故答案为:(6,0),(6,5),(6,2),(4,2)、(4,5)、(4,0).三、解答题:解答应写出文字说明、证明过程或演算步骤.12.求证:相似三角形面积的比等于相似比的平方.(请根据题意画出图形,写出已知,求证并证明)【解析】已知:如图,已知△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,△ABC和△A1B1C1的相似比为k.求证:=k2;证明:作AD⊥BC于D,A1D1⊥B1C1于D1,∵△ABC∽△A1B1C1,顶点A、B、C分别与A1、B1、C1对应,∴∠B=∠B1,∵AD、A1D1分别是△ABC,△A1B1C1的高线,∴∠BDA=∠B1D1A1,∴△ABD∽△A1B1D1,∴==k,∴==k2.13.如图所示,Rt△ABC∽Rt△DFE,CM、EN分别是斜边AB、DF上的中线,已知AC=9cm,CB=12cm,DE=3cm.(1)求CM和EN的长;(2)你发现的值与相似比有什么关系?得到什么结论?【解析】(1)在Rt△ABC中,AB===15,∵CM是斜边AB的中线,∴CM=AB=7.5,∵Rt△ABC∽Rt△DFE,∴,即,∴DF=5,∵EN为斜边DF上的中线,∴EN==2.5;(2)∵,相似比为,∴相似三角形对应中线的比等于相似比.14.如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB.(1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.15.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,∠A=48°,CD是△ABC的完美分割线,且AD=CD,则∠ACB=__________°.(2)如图2,在△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论